Skip to main content

Applications of a numbering scheme for polygonal obstacles in the plane

  • Session 1: Invited Presentation
  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1178))

Included in the following conference series:

  • 155 Accesses

Abstract

We present efficient algorithms for the problems of matching red and blue disjoint geometric obstacles in the plane and connecting the matched obstacle pairs with mutually nonintersecting paths that have useful geometric properties. We first consider matching n red and n blue disjoint isothetic rectangles and connecting the n matched rectangle pairs with nonintersecting monotone rectilinear paths; each such path consists of O(n) segments and is not allowed to touch any rectangle other than the matched pair that it is linking. Based on a numbering scheme for certain geometric objects and on several useful geometric observations, we develop an O(n log n) time, O(n) space algorithm that produces a desired matching for isothetic rectangles. If an explicit printing of all the n paths is required, then our algorithm takes O(n log n+λ) time and O(n) space, where λ is the total size of the desired output. We then extend these matching algorithms to other classes of red/blue polygonal obstacles. The numbering scheme also finds applications to other problems.

This work was carried out in part at the Center for Applied Science and Engineering and Institute of Information Science. Academia Sinica, Nankang, Taiwan, during its 1996 Summer Institute on Computational Geometry and Applications.

This author gratefully acknowledges support from the National Science Foundation under Grant DCR-9202807, and the COAST Project at Purdue University and its sponsors, in particular Hewlett Packard.

The research of this author was supported in part by the National Science Foundation under Grant CCR-9623585.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

    Google Scholar 

  2. M. G. Andrews, M. J. Atallah, D. Z. Chen, and D. T. Lee, “Parallel algorithms for maximum matching in interval graphs”, Proc. 9th IEEE International Parallel Processing Symp., 1995, pp. 84–92.

    Google Scholar 

  3. M. J. Atallah, “A matching problem in the plane”, J. of Computer and Systems Sciences, 31 (1985), pp. 63–70.

    Article  Google Scholar 

  4. M. J. Atallah and D. Z. Chen, “Parallel rectilinear shortest paths with rectangular obstacles”, Computational Geometry: Theory and Applications, 1 (1991), pp. 79–113.

    Article  Google Scholar 

  5. M. J. Atallah and D. Z. Chen, “On parallel rectilinear obstacle-avoiding paths”, Computational Geometry: Theory and Applications, 3 (1993), pp. 307–313.

    Google Scholar 

  6. M. J. Atallah, R. Cole, and M. T. Goodrich, “Cascading divide-and-conquer: A technique for designing parallel algorithms”, SIAM J. Computing, 18 (1989), pp. 499–532.

    Article  Google Scholar 

  7. M. J. Atallah, S. E. Hambrusch, and L. E. TeWinkel, “Parallel topological sorting of features in a binary image”, Algorithmica, 6 (1991), pp. 762–769.

    Article  Google Scholar 

  8. M. Ben-Or, “Lower bounds for algebraic computation trees”, Proc. 15th Annual ACM Symp. on Theory of Computing, 1983, pp. 80–86.

    Google Scholar 

  9. D. Z. Chen, “Efficient geometric algorithms on the EREW PRAM”, IEEE Trans. on Parallel and Distributed Systems, 6 (1) (1995), pp. 41–47.

    Article  Google Scholar 

  10. D. Z. Chen, G. Das, and M. Smid, “Lower bounds for computing geometric spanners and approximate shortest paths”, Proc. 8th Canadian Conf. on Computational Geometry, 1996, pp. 155–160.

    Google Scholar 

  11. D. Z. Chen and K. S. Klenk, “Rectilinear short path queries among rectangular obstacles”, Information Processing Letters, 57 (6) (1996), pp. 313–319.

    Article  Google Scholar 

  12. D. Z. Chen, K. S. Klenk, sind H.-Y. T. Tu, “Shortest path queries among weighted obstacles in the rectilinear plane”, Proc. 11th Annual ACM Symp. Computational Geometry, 1995, pp. 370–379.

    Google Scholar 

  13. J. Choi and C.-K. Yap, “Rectilinear geodesics in 3-space”, Proc. 11th Annual ACM Symp. Computational Geometry, 1995, pp. 380–389.

    Google Scholar 

  14. K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear shortest paths through polygonal obstacles in O(n(log n)2) time”, Proc. 3rd Annual ACM Symp. Computational Geometry, 1987, pp. 251–257.

    Google Scholar 

  15. K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear shortest paths through polygonal obstacles in O(n log3/2 n) time”, manuscript.

    Google Scholar 

  16. W. Dai, T. Asano, and E. S. Kuh, “Routing region definition and ordering scheme for building-block layout”, IEEE Trans. on Computer-Aided Design, CAD-4 (3) (1985), pp. 189–197.

    Google Scholar 

  17. M. de Berg, M. van Kreveld, and B. J. Nilsson, “Shortest path queries in rectangular worlds of higher dimension”, Proc. 7th Annual Symp. Computational Geometry, 1991, pp. 51–59.

    Google Scholar 

  18. P. J. de Rezende, D. T. Lee, and Y. F. Wu, “Rectilinear shortest paths in the presence of rectangles barriers”, Discrete & Computational Geometry, 4 (1989), pp. 41–53.

    Google Scholar 

  19. H. ElGindy and P. Mitra, “Orthogonal shortest route queries among axes parallel rectangular obstacles”, International J. of Computational Geometry and Applications, 4 (1) (1994), pp. 3–24.

    Article  Google Scholar 

  20. M. T. Goodrich, “Finding the convex hull of a sorted point set in parallel”, Information Processing Letters, 26 (1987/88), pp. 173–179.

    Article  Google Scholar 

  21. M. Iwai, H. Suzuki, and T. Nishizeki, “Shortest path algorithm in the plane with rectilinear polygonal obstacles” (in Japanese), Proc. of SIGAL Workshop, July 1994.

    Google Scholar 

  22. J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.

    Google Scholar 

  23. S. K. Kim, “Optimal parallel algorithms on sorted intervals”, Proc. 27th Annual Allerton Conf. Communication, Control, and Computing, 1989, pp. 766–775.

    Google Scholar 

  24. R. C. Larson and V. O. Li, “Finding minimum rectilinear distance paths in the presence of barriers”, Networks, 11 (1981), pp. 285–304.

    Google Scholar 

  25. D. T. Lee, T. H. Chen, and C. D. Yang, “Shortest rectilinear paths among weighted obstacles”, International J. of Computational Geometry and Applications, 1 (2) (1991), pp. 109–124.

    Article  Google Scholar 

  26. D. T. Lee, C. F. Shen, C. D. Yang, and C. K. Wong, “Non-crossing paths problems”, manuscript, Dept. of EECS, Northwestern University, 1991.

    Google Scholar 

  27. J. S. B. Mitchell, “An optimal algorithm for shortest rectilinear path among obstacles”, First Canadian Conf. on Computational Geometry, 1989.

    Google Scholar 

  28. J. S. B. Mitchell, “L 1 shortest paths among polygonal obstacles in the plane”, Algorithmica, 8 (1992), pp. 55–88.

    Article  Google Scholar 

  29. P. Mitra and B. Bhattacharya, “Efficient approximation shortest-path queries among isothetic rectangular obstacles”, Proc. 3rd Workshop on Algorithms and Data Structures, 1993, pp. 518–529.

    Google Scholar 

  30. T. M. Nicholl, D. T. Lee, Y. Z. Liao, and C. K. Wong, “On the X-Y convex hull of a set of X-Y polygons”, BIT, 23 (4) (1983), pp. 456–471.

    Article  Google Scholar 

  31. M. H. Overmars and J. van Leeuwen, “Maintenance of configurations in the plane”, J. of Computer and Systems Sciences, 23 (1981), pp. 166–204.

    Article  Google Scholar 

  32. E. Papadopoulou, “k-Pairs non-crossing shortest paths in a simple polygon”, to appear in the 7th Annual International Symp. on Algorithms and Computation, 1996, Osaka, Japan.

    Google Scholar 

  33. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  34. F. P. Preparata and K. J. Supowit, “Testing a simple polygon for monotonicity”, Information Processing Letters, 12 (1981), pp. 161–164.

    Article  Google Scholar 

  35. J. Takahashi, H. Suzuki, and T. Nishizeki, “Algorithms for finding non-crossing paths with minimum total length in plane graphs”, Proc. 3rd Annual International Symp. on Algorithms and Computation, 1992, pp. 400–409.

    Google Scholar 

  36. J. Takahashi, H. Suzuki, and T. Nishizeki, “Finding shortest non-crossing rectilinear paths in plane regions”, Proc. 4th Annual International Symp. on Algorithms and Computation, 1993, pp. 98–107.

    Google Scholar 

  37. R. E. Tarjan and U. Vishkin, “Finding biconnected components and computing tree functions in logarithmic parallel time”, SIAM J. Computing, 14 (1985), pp. 862–874.

    Article  Google Scholar 

  38. P. Widmayer, Y. F. Wu, and C. K. Wong, “On some distance problems in fixed orientations”, SIAM J. Computing, 16 (4) (1987), pp. 728–746.

    Article  Google Scholar 

  39. Y. F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong, “Rectilinear shortest paths and minimum spanning trees in the presence of rectilinear obstacles”, IEEE Trans. on Computers, C-36 (1987), pp. 321–331.

    Google Scholar 

  40. C. D. Yang, T. H. Chen, and D. T. Lee, “Shortest rectilinear paths among weighted rectangles”, Journal of Information Processing, 13 (4) (1990), pp. 456–462.

    Google Scholar 

  41. C. D. Yang, D. T. Lee, and C. K. Wong, “Rectilinear path problems among rectilinear obstacles revisited”, SIAM J. Computing, 24 (3) (1995), pp. 457–472.

    Article  Google Scholar 

  42. A. C.-C. Yao, “Lower bounds for algebraic computation trees with integer inputs”, SIAM J. Computing, 20 (1991), pp. 655–668.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tetsuo Asano Yoshihide Igarashi Hiroshi Nagamochi Satoru Miyano Subhash Suri

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atallah, M.J., Chen, D.Z. (1996). Applications of a numbering scheme for polygonal obstacles in the plane. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds) Algorithms and Computation. ISAAC 1996. Lecture Notes in Computer Science, vol 1178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009476

Download citation

  • DOI: https://doi.org/10.1007/BFb0009476

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62048-8

  • Online ISBN: 978-3-540-49633-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics