Skip to main content

Impact of genetic engineering on downstream processing of proteins produced in E. coli

  • Conference paper
  • First Online:
Applied Molecular Genetics

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 43))

Abstract

Genetic engineering can be used to give a protein properties that are advantageous for downstream processing. Many heterologous proteins are degraded at high rates by proteases. Depending on which type of proteolytic degradation is encountered the strategy may be different: induction of inclusion bodies, change of the amino acid sequence in the sensitive site of the product, or protection by fusion of the product with other proteins. The number of unit operations needed to purify a protein may be reduced by addition of other polypeptides or amino acids to the product. Affinity chromatography, immobilized metal ion affinity chromatography, and extraction in aqueous two-phase systems are unit operations which can be made more versatile by the fusion technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ala:

Alanine

Arg:

Arginine

Asn:

Asparagine

Asp:

Aspartic acid

DHFR:

Dihydrofolate reductase

E. coli:

Escherichia coli

Gly:

Glycine

His:

Histidine

IFN:

Interferon

IGF:

Human insulin-like growth factor

IgG:

Immunoglobulin G

IL:

Interleukin

kDa:

1000 dalton

NTA:

nitilotriacetate

ompT:

outer membrane protein T

PEG:

poly (ethylene) glycol

rDNA:

recombinant DNA

Ser:

Serine

SpA:

Staphylococcal protein A

ZZ:

artifical IgG-binding protein derived from staphylococcal protein A

References

  1. Cook RA (1988) CRC Critical Reviews in Biotechnology, 8, Issue 3: 159

    Google Scholar 

  2. Goldberg AL, Swamy KHS, Chung CH, Larimore FS (1981) Methods Enzymol. 80: 680

    Google Scholar 

  3. Larrabee KL, Phillips JO, Williams GJ, Larrabee AR (1980) J. Biol. Chem. 255: 4125

    Google Scholar 

  4. Goff SA, Goldberg AL (1985) Cell 41: 587

    Google Scholar 

  5. Kitano K, Fujimoto S, Nakao M, Watanabe T, Nakao Y (1987) J. Biotechnol. 5: 77

    Google Scholar 

  6. Chesshyre JA, Hipkiss AR (1989) Appl. Microbiol. Biotechnol. 31: 158

    Google Scholar 

  7. Goldberg AL, StJohn AC (1976) Ann. Rev. Biochem. 45: 747

    Google Scholar 

  8. Groat RG, Matin A (1986) J. Ind. Microbiol. 1: 69

    Google Scholar 

  9. Konrad M (1989) TIBTECH 7: 175

    Google Scholar 

  10. Marston FAO (1986) Biochem. J. 240: 1

    Google Scholar 

  11. Kane JF, Hartley DL (1988) TIBTECH 6: 95

    Google Scholar 

  12. Sharma SK (1986) Separation Sci. Technol. 21: 701

    Google Scholar 

  13. Shoemaker JM, Brasnett AH, Marston FAO (1985) EMBO J: 4: 775

    Google Scholar 

  14. Strandberg L. Hellebust H, Enfors SO (1988) In: Proceedings of biotechnological aspects of protein production in cultured cells, 6–8 July 1988. Prague

    Google Scholar 

  15. Strandberg L, Veide A, Enfors SO (1987) J. Biotechnol. 6: 225

    Google Scholar 

  16. Hellebust H, Murby M, Abrahmsén L, Uhlén M, Enfors SO (1989) Bio/Technology 7: 165

    Google Scholar 

  17. Schein CH, Noteborn MHM (1988) Bio/Technology 6: 291

    Google Scholar 

  18. Pietak M, Lane JA, Laird W, Bjorn MJ, Wang A, Williams M (1988) J. Biol. Chem. 263: 4837

    Google Scholar 

  19. Mitraki A, King J (1989) Bio/Technology 7: 690

    Google Scholar 

  20. Hellebust H, Uhlén M, Enfors SO (1989) J. Biotechnol. 12: 275

    Google Scholar 

  21. Hammarberg B, Nygren PÅ, Holmgren E, Elmblad A, Tally M, Hellman U, Moks T, Uhlén M (1989) Proc. Natl. Acad. Sci. USA 86, 4367

    Google Scholar 

  22. Moks T, Abrahmsén L, Homgren E, Bilich M, Olsson A, Uhlén M, Pohl G, Sterky C, Hultberg H, Josephson S, Holmgren A, Jörnvall H, Nilsson B (1987) Biochemistry 26: 5239

    Google Scholar 

  23. Nilsson B, Moks T, Jansson B, Abrahmsén L, Elmblad A, Holmgrene, Henrichson C, Jones TA, Uhlén M (1987) Protein Eng. 1: 107

    Google Scholar 

  24. Moks T, Abrahmsén L, Österlöf B, Josephson S, Östling M, Enfors SO, Persson I, Nilsson B, Uhlén M (1987) Bio/Technology 5: 379

    Google Scholar 

  25. Hochuli E, Bannwarth W, Döbeli H, Gentz R, Stüber D (1988) Bio/Technology 6: 13

    Google Scholar 

  26. Sassenfeld HM, Brewer SJ (1985) TIBTECH 3: 119

    Google Scholar 

  27. Veide A, Lindbäck T, Enfors SO (1984) Enzyme Microb. Technol. 6: 325

    Google Scholar 

  28. Veide A, Strandberg L, Enfors SO (1987) Enzyme Microb. Technol. 9: 730

    Google Scholar 

  29. Köhler K, von Bonsdorff-Lindeberg L, Enfors S-O (1989) Enzyme Microb. Technol. 11: 730

    Google Scholar 

  30. Albertsson PÅ (1981) Meth. Biochem. Anal. 29: 1

    Google Scholar 

  31. Szoka PR, Schreiber AB, Chan H, Murthy J (1986) DNA 5:11

    Google Scholar 

  32. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Proc. Natl. Acad. Sci. USA 76: 106

    Google Scholar 

  33. Nagai K, Perutz MF, Poyart C (1985) Proc. Natl. Acad. Sci. USA 82: 7252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Enfors, S.O., Hellebust, H., Köhler, K., Strandberg, L., Veide, A. (1990). Impact of genetic engineering on downstream processing of proteins produced in E. coli . In: Applied Molecular Genetics. Advances in Biochemical Engineering/Biotechnology, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009078

Download citation

  • DOI: https://doi.org/10.1007/BFb0009078

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52794-7

  • Online ISBN: 978-3-540-47151-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics