Impact of genetic engineering on downstream processing of proteins produced in E. coli

  • S. -O. Enfors
  • H. Hellebust
  • K. Köhler
  • L. Strandberg
  • A. Veide
Conference paper
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 43)

Abstract

Genetic engineering can be used to give a protein properties that are advantageous for downstream processing. Many heterologous proteins are degraded at high rates by proteases. Depending on which type of proteolytic degradation is encountered the strategy may be different: induction of inclusion bodies, change of the amino acid sequence in the sensitive site of the product, or protection by fusion of the product with other proteins. The number of unit operations needed to purify a protein may be reduced by addition of other polypeptides or amino acids to the product. Affinity chromatography, immobilized metal ion affinity chromatography, and extraction in aqueous two-phase systems are unit operations which can be made more versatile by the fusion technique.

List of Symbols and Abbreviations

Ala

Alanine

Arg

Arginine

Asn

Asparagine

Asp

Aspartic acid

DHFR

Dihydrofolate reductase

E. coli

Escherichia coli

Gly

Glycine

His

Histidine

IFN

Interferon

IGF

Human insulin-like growth factor

IgG

Immunoglobulin G

IL

Interleukin

kDa

1000 dalton

NTA

nitilotriacetate

ompT

outer membrane protein T

PEG

poly (ethylene) glycol

rDNA

recombinant DNA

Ser

Serine

SpA

Staphylococcal protein A

ZZ

artifical IgG-binding protein derived from staphylococcal protein A

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cook RA (1988) CRC Critical Reviews in Biotechnology, 8, Issue 3: 159Google Scholar
  2. 2.
    Goldberg AL, Swamy KHS, Chung CH, Larimore FS (1981) Methods Enzymol. 80: 680Google Scholar
  3. 3.
    Larrabee KL, Phillips JO, Williams GJ, Larrabee AR (1980) J. Biol. Chem. 255: 4125Google Scholar
  4. 4.
    Goff SA, Goldberg AL (1985) Cell 41: 587Google Scholar
  5. 5.
    Kitano K, Fujimoto S, Nakao M, Watanabe T, Nakao Y (1987) J. Biotechnol. 5: 77Google Scholar
  6. 6.
    Chesshyre JA, Hipkiss AR (1989) Appl. Microbiol. Biotechnol. 31: 158Google Scholar
  7. 7.
    Goldberg AL, StJohn AC (1976) Ann. Rev. Biochem. 45: 747Google Scholar
  8. 8.
    Groat RG, Matin A (1986) J. Ind. Microbiol. 1: 69Google Scholar
  9. 9.
    Konrad M (1989) TIBTECH 7: 175Google Scholar
  10. 10.
    Marston FAO (1986) Biochem. J. 240: 1Google Scholar
  11. 11.
    Kane JF, Hartley DL (1988) TIBTECH 6: 95Google Scholar
  12. 12.
    Sharma SK (1986) Separation Sci. Technol. 21: 701Google Scholar
  13. 13.
    Shoemaker JM, Brasnett AH, Marston FAO (1985) EMBO J: 4: 775Google Scholar
  14. 14.
    Strandberg L. Hellebust H, Enfors SO (1988) In: Proceedings of biotechnological aspects of protein production in cultured cells, 6–8 July 1988. PragueGoogle Scholar
  15. 15.
    Strandberg L, Veide A, Enfors SO (1987) J. Biotechnol. 6: 225Google Scholar
  16. 16.
    Hellebust H, Murby M, Abrahmsén L, Uhlén M, Enfors SO (1989) Bio/Technology 7: 165Google Scholar
  17. 17.
    Schein CH, Noteborn MHM (1988) Bio/Technology 6: 291Google Scholar
  18. 18.
    Pietak M, Lane JA, Laird W, Bjorn MJ, Wang A, Williams M (1988) J. Biol. Chem. 263: 4837Google Scholar
  19. 19.
    Mitraki A, King J (1989) Bio/Technology 7: 690Google Scholar
  20. 20.
    Hellebust H, Uhlén M, Enfors SO (1989) J. Biotechnol. 12: 275Google Scholar
  21. 21.
    Hammarberg B, Nygren PÅ, Holmgren E, Elmblad A, Tally M, Hellman U, Moks T, Uhlén M (1989) Proc. Natl. Acad. Sci. USA 86, 4367Google Scholar
  22. 22.
    Moks T, Abrahmsén L, Homgren E, Bilich M, Olsson A, Uhlén M, Pohl G, Sterky C, Hultberg H, Josephson S, Holmgren A, Jörnvall H, Nilsson B (1987) Biochemistry 26: 5239Google Scholar
  23. 23.
    Nilsson B, Moks T, Jansson B, Abrahmsén L, Elmblad A, Holmgrene, Henrichson C, Jones TA, Uhlén M (1987) Protein Eng. 1: 107Google Scholar
  24. 24.
    Moks T, Abrahmsén L, Österlöf B, Josephson S, Östling M, Enfors SO, Persson I, Nilsson B, Uhlén M (1987) Bio/Technology 5: 379Google Scholar
  25. 25.
    Hochuli E, Bannwarth W, Döbeli H, Gentz R, Stüber D (1988) Bio/Technology 6: 13Google Scholar
  26. 26.
    Sassenfeld HM, Brewer SJ (1985) TIBTECH 3: 119Google Scholar
  27. 27.
    Veide A, Lindbäck T, Enfors SO (1984) Enzyme Microb. Technol. 6: 325Google Scholar
  28. 28.
    Veide A, Strandberg L, Enfors SO (1987) Enzyme Microb. Technol. 9: 730Google Scholar
  29. 29.
    Köhler K, von Bonsdorff-Lindeberg L, Enfors S-O (1989) Enzyme Microb. Technol. 11: 730Google Scholar
  30. 30.
    Albertsson PÅ (1981) Meth. Biochem. Anal. 29: 1Google Scholar
  31. 31.
    Szoka PR, Schreiber AB, Chan H, Murthy J (1986) DNA 5:11Google Scholar
  32. 32.
    Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Proc. Natl. Acad. Sci. USA 76: 106Google Scholar
  33. 33.
    Nagai K, Perutz MF, Poyart C (1985) Proc. Natl. Acad. Sci. USA 82: 7252Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • S. -O. Enfors
    • 1
  • H. Hellebust
    • 1
  • K. Köhler
    • 1
  • L. Strandberg
    • 1
  • A. Veide
    • 1
  1. 1.Department of Biochemistry and BiotechnologyThe Royal Institute of TechnologyStockholmSweden

Personalised recommendations