Skip to main content

Intracellular lytic enzyme systems and their use for disruption of Escherichia coli

  • Conference paper
  • First Online:
Applied Molecular Genetics

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 43))

Abstract

This article focusses on lytic enzyme systems available in E. coli and their potential use for cellular disruption. In the systems described here the genetic information for lysis would be carried within the microbial host, either integrated or naturally occurring on chromosomal DNA, or on extrachromosomal elements such as plasmids. Each microbe would carry complete information for endogenous enzymatic lysis, and lysis would occur in a controlled manner after being triggered by an external factor such as temperature or inducer addition. The lytic systems explored in this review include the autolytic enzymes, colicin lytic enzymes, and bacteriophage lytic enzymes from phage phiX174, T4, lambda, MS2 and Qβ. Many of the colicin lytic enzymes and all of the bacteriophage lytic enzymes described here have been cloned, and in some instances examined as cellular disruption methods. None of the E. coli autolytic enzymes have been cloned, but information pertinent for use as a disruption method is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hughes DE, Wimpenny JWT, Lloyd D (1971) The disintegration of microorganisms. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic, New York, p 1

    Google Scholar 

  2. Scawen MD, Atkinson A, Darbyshire J (1980) Large-scale enzyme purification. In: Grant RA (ed), Applied protein chemistry, Applied Science Publishers, London, p 281

    Google Scholar 

  3. Darbyshire J (1981) Large scale enzyme extraction and recovery. In: Wiseman A (ed) Topics in enzyme and fermentation biotechnology, Ellis Horwood, New York, p 147

    Google Scholar 

  4. Engler CR (1985) Disruption of microbial cells. In: Moo-Young M (ed-in-chief) Cooney CL, Humphrey AE (eds) Comprehensive biotechnology, vol 2, Pergamon, New York, p 305

    Google Scholar 

  5. Auerbach JI, Rosenberg M (1987) US Patent # 4637980

    Google Scholar 

  6. Crabtree S, Cronan JE (1984) J. Bact. 158: 354

    Google Scholar 

  7. Henrich B, Plapp R (1984) J. Biochem. Biophys. Meth. 10: 25

    Google Scholar 

  8. Glover DM (1984) Gene cloning. Chapman and Hall, New York

    Google Scholar 

  9. Milewski EA (1984) The NIH guidelines for research involving recombinant DNA molecules. In: Bollon AP (ed) Recombinant DNA products: insulin, interferon and growth hormone, CRC Press, Boca Raton, p 156

    Google Scholar 

  10. Park JT (1987) The murein sacculus. In: F.C. Neidhardt (ed) Escherichia coli and Salmonella typhimurium. American Society for Microbiology, vol 1, Washington DC, p 7

    Google Scholar 

  11. Coakley WT, Bater AJ, Lloyd D (1977) Adv. Micro. Phys. 16: 279

    Google Scholar 

  12. Gmeiner J (1980) J. Bact. 143: 510

    Google Scholar 

  13. Braun V, Gnirke H, Henning U, Rehn K (1973) J. Bact. 114: 1264

    Google Scholar 

  14. Pelzer von H (1963) Z. Naturf. 18B: 950

    Google Scholar 

  15. Holtje JV, Mirelman D, Sharon N, Schwarz U (1975) J. Bact. 124: 1067

    Google Scholar 

  16. Tomasz A (1983) Mode of action of β-lactam antibiotics —a microbiologist's view. In: Demain AL, Solomon NA (eds) Antibiotics containing the β-lactam structure I, Springer, Berlin Heidelberg New York (vol 67/I)

    Google Scholar 

  17. Phaff HJ (1977) Enzymatic yeast cell wall degradation. In: Feeney RJ, Whitaker JR (eds) Food proteins: improvement through chemical and enzymatic modification, American Chemical Society, Washington DC, p 244 (no 160)

    Google Scholar 

  18. Belikov VM, Latov VK, Tsyriapkin VA, Sergeev VA (1976) Microbiologichesky Promyshlennost [Microbiological Industry] 3:1

    Google Scholar 

  19. Akin C, Murphy RM (1981) US patent 4285976

    Google Scholar 

  20. Arnold WN (1981) Autolysis. In: Arnold WN (ed) Yeast cell envelopes: biochemistry, biophysics, and ultrastructure, vol 2, CRC Press, Boca Raton, p 129

    Google Scholar 

  21. Weissman C, Schein C (1982) Eur. Pat. Appl. EP # 61250

    Google Scholar 

  22. Rogers HJ (1979) The function of bacterial autolysins. In: Berkeley RCW, Gooday GW, Ellwood DC, (eds) Microbial polysaccharides and polysaccharases, Academic, New York

    Google Scholar 

  23. Leduc M, Kasra R, Singer H, Heijenoort J van (1984) FEMS Micro. Lett. 23: 137

    Google Scholar 

  24. Tomasz A (1984) Building and breaking of bonds in the cell wall of bacteria —the role for autolysins. In: Nombela C (ed) Microbial cell wall synthesis and autolysis, Elsevier, New York

    Google Scholar 

  25. Leduc M, Heijenoort J van (1980) J. Bact. 142: 52

    Google Scholar 

  26. Blasi U, Halfmann G, Lubitz W (1984) Induction of autolysis of Escherichia coli. In: C. Nombela (ed) Microbial cell wall synthesis and autolysis, Elsevier, New York

    Google Scholar 

  27. Halfmann G, Lubitz W (1986) J. Bact. 166: 683

    Google Scholar 

  28. Leduc M, Kasra R, Heijenoort J van (1982) J. Bact. 152: 26

    Google Scholar 

  29. Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) J. Gen. Micro. 132: 1297

    Google Scholar 

  30. Lubitz W, Halfmann G, Plapp R (1984) J. Gen. Micro. 130: 1079

    Google Scholar 

  31. Tuomanen E, Tomasz A (1986) J. Bact. 167: 1077

    Google Scholar 

  32. Leduc M, Frehel C, Heijenoort J van (1985) J. Bact. 161: 627

    Google Scholar 

  33. Kitano K, Tomasz A (1979) Antimicrob. Agents Chemother. 16: 838

    Google Scholar 

  34. Markert A, Zillig W (1965) Vir. 25: 88

    Google Scholar 

  35. Nomura M (1964) PNAS 52: 1514

    Google Scholar 

  36. Konisky J (1978) The bacteriocins. In: Ornston LN, Sokatch JR (eds) The bacteria, vol VI, Academic, New York, p 71

    Google Scholar 

  37. Luria SE, Suit JL (1982) Transmembrane channels produced by colicin molecules. In: Martinosi A (ed) Membranes and transport, vol 2, Plenum, New York, p 279

    Google Scholar 

  38. Cramer WA, Dankert JR, Uratani Y (1983) Biochim. Biophys. Acta 737: 173

    Google Scholar 

  39. Luria SE, Suit JL (1987) Colicins and Col plasmids. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium, vol 2, American Society for Microbiology, Washington DC, p 1615

    Google Scholar 

  40. Sabik JF, Suit JL, Luria SE (1983) J. Bact. 153: 1479

    Google Scholar 

  41. Hakkaart MJJ, Veltkamp E, Nijkamp HJJ (1981) Mol. Gen. Genet. 183: 318

    Google Scholar 

  42. Hakkaart MJJ, Veltkamp E, Nijkamp HJJ (1981) Gen. Genet. 183: 326

    Google Scholar 

  43. Pugsley AP, Schwarz M (1984) EMBO J. 3: 2393

    Google Scholar 

  44. Watson RJ, Lau PCK, Vernet T, Visentin LP (1984) Gene 29: 175

    Google Scholar 

  45. Jakes KS, Zinder ND (1984) J. Bact. 157: 582

    Google Scholar 

  46. Lloubes R, Baty D, Lazdunski C (1986) Nucl. Acids Res. 14: 2621

    Google Scholar 

  47. van den Elzen PJM, Walters HHB, Veltkamp E, Nijkamp HJJ (1983) Nucl. Acids Res. 11: 2465

    Google Scholar 

  48. Cole ST, Saint-Joanis B, Pugsley AP (1985) Mol. Gen. Genet. 198: 465

    Google Scholar 

  49. Chan PT, Ohmori H, Tomizawa J, Lebowitz J (1985) J. Biol. Chem. 260: 8925

    Google Scholar 

  50. Pugsley AP, Schwarz M (1983) J. Bact. 156: 109

    Google Scholar 

  51. Altieri J, Suit JL, Fan M-LJ, Luria SE (1986) J. Bact. 168: 648

    Google Scholar 

  52. Howard SP, Leduc M, van Heijenoort J, Lazdunski C (1987) FEMS Micro. Lett. 42: 147

    Google Scholar 

  53. Kobayashi T, Kato C, Kudo T, Horikoshi K (1986) J. Bact. 166: 8

    Google Scholar 

  54. Kudo T, Kato C, Horikoshi K (1983) J. Bact. 156: 949

    Google Scholar 

  55. Kato C, Kobayashi T, Kudo T, Furusato T, Murakami Y, Tanaka T, Baba H, Oishi T, Ohtsuka E, Ikehara M, Yanagida T, Kato H, Moriyama S, Horikoshi K (1987) Gene 54: 197

    Google Scholar 

  56. Sher IH, Mallette MF (1952) J. Biol. Chem. 200: 257

    Google Scholar 

  57. Young R, Way J, Way S, Yin J, Syvanen M (1979) J. Mol. Biol. 132: 307

    Google Scholar 

  58. Reader RW, Siminovitch L (1971) Vir. 43: 623

    Google Scholar 

  59. Bienkowska-Szewczyk K, Lipinska B, Taylor A (1981) Mol. Gen. Genet. 184: 111

    Google Scholar 

  60. Altman E, Young K, Garrett J, Altman RA, Young R (1985) J. Vir. 53: 1008

    Google Scholar 

  61. Garrett J, Fusselman R, Hise J, Chiou L, Smith-Grillo D, Schulz J, Young R (1981) Mol. Gen. Genet. 182: 326

    Google Scholar 

  62. Garrett JM, Young R (1982) J. Vir. 44: 886

    Google Scholar 

  63. Friedman DI, Olsen ER, Georgopoulos C, Tilly K, Herskowitz I, Banuett F (1984) Micro. Rev. 48: 299

    Google Scholar 

  64. Tsugita A, Inouye M (1968) J. Biol. Chem. 243: 391

    Google Scholar 

  65. Josslin R (1970) Vir 40: 719

    Google Scholar 

  66. Mukai F, Streisinger G, Miller B (1967) Vir. 33: 398

    Google Scholar 

  67. Wetzel RB (1985) Eur. Pat. Appl. EP # 155189

    Google Scholar 

  68. Perry LJ, Heyneker HL, Wetzel R (1985) Gene 38: 259

    Google Scholar 

  69. Raj CVS, Wu HC (1973) J. Bact. 1973: 656

    Google Scholar 

  70. Bachmann B (1987) Linkage map of Escherichia coli K-12, edition 7. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium, vol 2, American Society for Microbiology, Washington DC, p 807

    Google Scholar 

  71. Hutchinson CA, Sinsheimer RL (1963) J. Mol. Biol. 7: 206

    Google Scholar 

  72. Hutchinson CA, Sinsheimer RL (1966) J. Mol. Biol. 18: 429

    Google Scholar 

  73. Young KD, Young R (1982) J. Vir. 44: 993

    Google Scholar 

  74. Henrich B, Lubitz W, Plapp R (1982) Mol Gen. Genet. 185: 493

    Google Scholar 

  75. Barrell BG, Air GM, Hutchinson CA (1976) Nature 264: 34

    Google Scholar 

  76. Lubitz W, Plapp R (1980) Curr. Micro. 4: 301

    Google Scholar 

  77. Dabora RL (1989) Studies on the action of the cloned phiX174 lysis gene E, Thesis. Massachusetts Institute of Technology, Cambridge, Massachusetts

    Google Scholar 

  78. Pollock TJ, Tessman ES, Tessman I (1978) J. Vir. 28: 408

    Google Scholar 

  79. Lubitz W, Schmid R, Plapp R (1981) Curr. Micro. 5: 45

    Google Scholar 

  80. Blasi U, Geisen R, Lubitz W, Henrich B, Plapp R (1983) Localization of the bacteriophage phiX174 lysis gene product in the cell envelope of Escherichia coli. In: Hakenbeck T (ed) The target of penicillin, Walter de Gruyter, New York

    Google Scholar 

  81. Maratea D, Young K, Young R (1985) Gene 40: 39

    Google Scholar 

  82. Buckley KJ, Hayashi M (1986) Mol. Gen. Genet. 204: 120

    Google Scholar 

  83. Blasi U, Lubitz W (1985) J. Gen. Vir. 66: 1209

    Google Scholar 

  84. Blasi U, Harkness RE, Witte A, Halfmann G, Lubitz W (1986) Endogenous induction of bacterial lysis by cloned phiX174 gene E product. In: Seidl PH, Schleifer KH (eds) Biological properties of peptidoglycan, Walter de Gruyter, New York

    Google Scholar 

  85. Lubitz W, Harkness RE, Ishiguro E (1984) J. Bact. 159: 385

    Google Scholar 

  86. Witte A, Lubitz W, Bakker EP (1987) J. Bact. 169: 1750

    Google Scholar 

  87. Wadle D, Henrich B, Plapp R (1986) Curr. Micro. 14: 65

    Google Scholar 

  88. Kastelein RA, Remaut E, Fiers W, Van Duin J (1982) Nature 295: 35

    Google Scholar 

  89. Coleman J, Inouye M, Atkins J (1983) J. Bact. 153: 1098

    Google Scholar 

  90. Holtje JV, van Duin J (1984) MS2-phage induced lysis of E. coli depends upon the activity of the bacterial autolysins. In: Nombela C (ed) Microbial cell wall synthesis and autolysis, Elsevier, New York

    Google Scholar 

  91. Holtje JV, Fiedler W, Rotering H, Walderich B, van Duin J (1988) J. Biol. Chem. 263: 3539

    Google Scholar 

  92. Kennedy EP (1982) PNAS 79: 1092

    Google Scholar 

  93. Goessens WHF, Driessen AJM, Wilschut J, van Duin J (1988) EMBO J. 7: 867

    Google Scholar 

  94. Winter RB, Gold L (1983) Cell 33: 877

    Google Scholar 

  95. Harkness RE, Lubitz W (1987) FEMS Micro. Lett. 48: 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Dabora, R.L., Cooney, C.L. (1990). Intracellular lytic enzyme systems and their use for disruption of Escherichia coli . In: Applied Molecular Genetics. Advances in Biochemical Engineering/Biotechnology, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009077

Download citation

  • DOI: https://doi.org/10.1007/BFb0009077

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52794-7

  • Online ISBN: 978-3-540-47151-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics