Skip to main content

Evaluation of biomass

  • Chapter
  • First Online:
Biotechnics/Wastewater

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 51))

Abstract

Evaluation of biomass concentration is an important problem encountered in many microbial and other bioprocesses. It determines the catalytic activity of the microbial cell in a given time. Various direct and indirect methods for the estimation of biomass have been developed using physical and biochemical techniques. Despite many promising classical methods available, the evaluation of microbial growth in bioprocesses may sometimes become laborious, impracticable and give erroneous values. Various methods for enumeration of organisms and determination of biomass, including recent developments in monitoring biomass concentration for the control of biotechnological processes, are discussed taking into the consideration their practical importance, usefulness and constraints in application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olsen RA, Bakken IR (1987) Microb Ecol 13: 59

    Google Scholar 

  2. White DC (1986) Arch Hydrobiol 31: 1

    Google Scholar 

  3. Paul EA, Ladd JN (eds) (1981) Soil biochemistry, vol 5, Marcel Dekker, New York, p 415

    Google Scholar 

  4. Wang HY (1984) Biotechnol Bioeng Symp 14: 601

    Google Scholar 

  5. Graham A, Moo-Young M (1985) Biotechnol Adv 3: 209

    Google Scholar 

  6. Roberts RB, Abelson PH, Cowie DB, Bolton ET, Britten RJ (1955) Studies on the biosynthesis in Escherichia coli. Carnegie Institute Pub. 607, Washington

    Google Scholar 

  7. Powell EO (1963) J Sci Food Agric 14: 1

    Google Scholar 

  8. Hobson PN, Mann S (1970) Automation, mechanization and data handling in microbiology. Academic, London

    Google Scholar 

  9. Pirt SJ (1975) Principles of Microbe and Cell Cultivation, Blackwell Scientific, Oxford

    Google Scholar 

  10. Collee JG, Duguid JP, Fraser AG, Marrison BP (1980) Practical medical microbiology, 13th edn. Churchill Livingstone, London

    Google Scholar 

  11. Meyenell GG, Meyenell E (1970) Theory and Practice in Experimental Bacteriology. Cambridge University Press, Cambridge

    Google Scholar 

  12. Cruickshank R, Duguid DM, Chih-Hua W (1975) Medical microbiology, 12th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  13. Jones JG (1979) A guide to methods of estimating microbial numbers and biomass in fresh water. Biological Association, Windermere

    Google Scholar 

  14. Taylor J (1962) J Appl Bacteriol 25: 54

    Google Scholar 

  15. American Public Health Association (1976) Standard methods of the examination of water and wastewater, 14 edn. Washington

    Google Scholar 

  16. Macfarlane GT, Herbert RA (1984) J Gen Microbiol 130: 2301

    Google Scholar 

  17. Battersby NA, Stewart, DJ, Sharma AP (1985) J Appl Bacteriol 58: 425

    Google Scholar 

  18. Clarke KR, Owens NJP (1983) J Microbiol Meth 1: 133

    Google Scholar 

  19. Austin B (ed) (1988) Methods in aquatic microbiology. John Wiley, Chichester, p 27

    Google Scholar 

  20. Hobbie JE, Daley RJ, Jasper S (1977) Appl Environ Microbiol 33: 1225

    Google Scholar 

  21. Zimmerman R (1977) In: Rheinheimer G (ed) Microbiol ecology of a brackish water environment. Springer, Berlin Heidelberg, New York, p 103

    Google Scholar 

  22. Daley RJ (1979) In: Costerton JW, Colwell RR (eds) Native aquatic bacteria: Enumeration, activity and ecology. American Society of Testing and Materials, Philadelphia

    Google Scholar 

  23. Wynn-Williams DD (1985) Soil Biol Biochem 17: 739

    Google Scholar 

  24. Fry JC (1990) Meth Microbiol 22: 41

    Google Scholar 

  25. Björnsen PK (1978) Appl Environ Microbiol 36: 584

    Google Scholar 

  26. Schmid EL (1973) Bull Ecol Res Comm 17: 67

    Google Scholar 

  27. Szwerinski H, Gaiser S, Dardtke D (1985) Appl Microbiol Biotechnol 21: 125

    Google Scholar 

  28. Belser LW, Schmid EL (1978) Appl Environ Microbiol 36: 584

    Google Scholar 

  29. Smith AD (1988) Arch Microbiol 133: 118

    Google Scholar 

  30. Bohlool BB, Schmid EL (1973) Bull Ecol Res Comm 17: 336

    Google Scholar 

  31. Bobowski S, Nedwell DB (1987) In: Hopton JW, Hill EC, Industrial microbiological testing, Blackwell Scientific, Oxford, p 171

    Google Scholar 

  32. Engvall E, Perlman P (1971) Immunochemistry 8: 871

    Google Scholar 

  33. Evans JH, McGill SM (1969) Hydrobiologia 35: 401

    Google Scholar 

  34. Sheldon RW, Parsons TR (1967) A practical manual on the use of the Coulter counter in marine science. Coulter Electronics, Canada Ltd

    Google Scholar 

  35. Sieburth JM (1979) Sea microbes. Oxford University Press, New York

    Google Scholar 

  36. Kubitschek HE (1969) Meth Microbiol 1: 593

    Google Scholar 

  37. Krambeck C, Krambeck H-J, Overbeck J (1981) Appl Environ Microbiol 42: 142

    Google Scholar 

  38. Watson SW, Novisky JJ, Quinby HL, Valois FW (1977) Appl Environ Microbiol 33: 940

    Google Scholar 

  39. Borsheim M, Bratbak G, Heldal M (1990) Appl Environ Microbiol 56: 352

    Google Scholar 

  40. Heldal M, Norland S, Tumyr O (1985) Appl Environ Microbiol 50: 1251

    Google Scholar 

  41. Moo-Young M, Moreira AR, Tengerdy RP (1983) The filamentous fungi, vol 4. Edward Arnold, London, p 117

    Google Scholar 

  42. Moreira AR, Phillips JA, Humphrey AE (1978) Biotechnol Bioeng 21: 1501

    Google Scholar 

  43. Holme NA, McIntyre AD (1977) Methods for the study of the marine benthos. Blackwell Scientific, Oxford

    Google Scholar 

  44. Chattopadhyay NC, Nandi B (1977) Phytopath Z 89: 256

    Google Scholar 

  45. Peach K, Tracey MV (1955) Modern methods of plant analysis. Springer, Berlin Heidelberg New York, p 246

    Google Scholar 

  46. Wang DIC, Cooney CL, Demain AL, Dunnill P, Humphrey AE, Lilly MD (1979) Fermentation and enzyme technology. John Wiley, New York

    Google Scholar 

  47. Garg SK, Neelkantan S (1982) Biotechnol Bioeng 24: 2407

    Google Scholar 

  48. Lang CA (1958) Anal Chem 30: 1692

    Google Scholar 

  49. Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) MIRCEN J Appl Microbiol Biotechnol 4: 473

    Google Scholar 

  50. Singh A, Abidi AB, Darmwal NS, Agrawal AK (1988) Biol Mem 14: 53

    Google Scholar 

  51. McDonald AMG (1963) Ind Chem 39: 265

    Google Scholar 

  52. Benett EO, Williams RP (1957) Appl Microbiol 5: 14

    Google Scholar 

  53. Hosler P, Johnson MJ (1953) Ind Eng Chem 45: 871

    Google Scholar 

  54. Galnous DS, Kapoulos A (1966) Anal Chim Acta 34: 360

    Google Scholar 

  55. Swift MJ (1973) Soil Biol Biochem 5: 321

    Google Scholar 

  56. Swift MJ (1973) Bull Ecol Res Comm 17: 323

    Google Scholar 

  57. Chen GC, Johnson BR (1982) Appl Environ Microbiol 46: 13

    Google Scholar 

  58. Hicks RE, Newell SY (1984) Oikos 42: 355

    Google Scholar 

  59. Kumar PKR, Lonsane BK (1987) Biotechnol Bioeng 34: 276

    Google Scholar 

  60. Frankland JC, Lindley DK, Swift MJ (1978) Soil Biol Biochem 10: 323

    Google Scholar 

  61. Ride JP, Drysdale RB (1971) Physiol Plant Pathol 1: 409

    Google Scholar 

  62. Ride JP, Drysdale RB (1972) Physiol Plant Pathol 2: 7

    Google Scholar 

  63. Sharma PO, Fisher PJ, Webster JP (1977) Trans Br Mycol Soc 69: 479

    Google Scholar 

  64. King JD, White DC (1977) Appl Environ Microbiol 33: 777

    Google Scholar 

  65. Miller WN, Casida LE (1970) Can J Microbiol 16: 299

    Google Scholar 

  66. Casergrande DJ, Park K (1978) Soil Sci 125: 181

    Google Scholar 

  67. Gunnarsson T, Tunlid A (1986) Soil Biol Biochem 18: 595

    Google Scholar 

  68. Tunlid A, Odham G (1983) J Microbiol Meth 1: 63

    Google Scholar 

  69. Moriarty DWJ (1983) J Microbiol Meth 1: 111

    Google Scholar 

  70. Ellwood, DC, Tempest DW (1972) Adv Microb Physiol 7: 83

    Google Scholar 

  71. Schleifer KH, Kandler O (1972) Bacteriol Rev 36: 407

    Google Scholar 

  72. White DC, Davies WM, Nickels JA, King JD, Bobbie RJ (1979) Oecologia 40: 51

    Google Scholar 

  73. Slater JH, Whittenbury EJ, Wimphery JNT (eds) (1983) Microbes in their natural environments. Society of General Microbiology, p 37

    Google Scholar 

  74. Gehron MI, White DC (1983) J Microbiol Meth 1: 23

    Google Scholar 

  75. Blakwill DL, Leach FR, Wilson, JT, McNabb JF, White DC (1988) Microb Ecol 16: 73

    Google Scholar 

  76. Kates M (1964) Adv Lipid Res 2: 17

    Google Scholar 

  77. Wossef MK (1977) Adv Lipid Res 15: 159

    Google Scholar 

  78. Kowalenko CG, McKercher RB (1970) Soil Biol Biochem 2: 269

    Google Scholar 

  79. Lechevalier MP (1977) Crit Rev Microbiol 7: 109

    Google Scholar 

  80. White DC, Tucker AN (1969) J Lipid Res 10: 220

    Google Scholar 

  81. Nannipieri P, Johnson RL, Paul EA (1978) Soil Biol Biochem 10: 223

    Google Scholar 

  82. Logal DM (1988) In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 7. Academic, London, p 699

    Google Scholar 

  83. Grant WD, West AW (1986) J Microbiol Meth 6: 47

    Google Scholar 

  84. Nes WR (1977) Lipid Res 15: 233

    Google Scholar 

  85. Matcham SE, Jordan BR, Wood DA (1985) Appl Microbiol Biotechnol 21: 108

    Google Scholar 

  86. Ford SR, Webster JJ, Leach FR (1985) Soil Biol Biochem 17: 811

    Google Scholar 

  87. Suzuki M, Mikami T, Matsumoto T, Suzuki S (1977) Microbiol Immunol 21: 419

    Google Scholar 

  88. Saddler JN, Wardlow AC (1980) Antonie von Leeuwenhoek J Microbiol 46: 27

    Google Scholar 

  89. Karl DM (1980) Microbiol Rev 44: 739

    Google Scholar 

  90. Thiery A, Chicheportiche R (1988) Appl Microbiol Biotechnol 28: 199

    Google Scholar 

  91. Deming JW, Picciolo GL, Chappelle EW (1979) In: Costeron JW, Colwell RR (eds) Native aquatic bacteria: Enumeration, activity and ecology. American Society of Testing and Materials, Philadelphia, p 88

    Google Scholar 

  92. Karl DM, Holm-Hanson O (1976) Anal Biochem 75: 100

    Google Scholar 

  93. Gray TRG, Hissel R, Duxbury T (1974) Rev Ecol Biol Soil 11: 15

    Google Scholar 

  94. Cochet N, Tyagi RD, Ghose TK, Lebeault JM (1984) Biotechnol Lett 6: 155

    Google Scholar 

  95. Kavanagh F (ed) (1963) Analytical microbiology, Academic, New York

    Google Scholar 

  96. Calam CT (1969) Meth Microbiol 1: 567

    Google Scholar 

  97. Previt JJ (1972) Appl Microbiol 24: 535

    Google Scholar 

  98. Harris D (1979) In: Grossbard E (ed) Straw decay and its effects on utilization and disposal. John Wiley, Chichester, p 265

    Google Scholar 

  99. Siegmund D, Diekman H (1989) Appl Microbiol Biotechnol 32: 32

    Google Scholar 

  100. Volesky B, Yerushalmi L, Luong JHT (1982) J Chem Technol Biotechnol 32: 650

    Google Scholar 

  101. Luong JHT, Yerushalmi L, Volesky B (1983) Enzyme Microb Technol 5: 291

    Google Scholar 

  102. Zimmerman R, Itturiaga R, Backer-Birck J (1978) Appl Environ Microbiol 36: 926

    Google Scholar 

  103. Dutton RJ, Bitton G, Koopman B (1983) Appl Environ Microbiol 46: 1263

    Google Scholar 

  104. Lopez JM, Koopman B, Bitton G (1986) Biotechnol Bioeng 28: 1080

    Google Scholar 

  105. Patton AM, Jones SM (1975) J Appl Bacteriol 38: 199

    Google Scholar 

  106. Ramsay AJ (1984) Soil Biol Biochem 16: 475

    Google Scholar 

  107. Baath E (1988) Soil Biol Biochem 20: 123

    Google Scholar 

  108. Postgate JR (1969) Meth Microbiol 11: 611

    Google Scholar 

  109. Painting K, Kirsop B (1990) World J Microbiol Biotechnol 6: 346

    Google Scholar 

  110. Combrier E, Matezean P, Ronot X, Gachelin H, Adolphe M (1989) Cytotechnol 2: 27

    Google Scholar 

  111. Sonnleitner B, Fiechter A (1989) GBF Monogr 13: 75

    Google Scholar 

  112. Locher G, Sonnleitner B, Fiechter A (1990) Biopr. Eng. 5: 181

    Google Scholar 

  113. Locher G, Sonnleitner B, Fiechter A (1991) J Biotechnol 19: 127

    Google Scholar 

  114. Sonnleitner B, Locher G, Fiechter A (1991) J Biotechnol 19: 1

    Google Scholar 

  115. Locher G, Sonnleitner B, Fiechter A (1992) J Biotechnol 25: 23

    Google Scholar 

  116. Picque D, Corrieu G (1988) Biotechnol Bioeng 31: 19

    Google Scholar 

  117. Schügerl K, Lübbert A, Scheper T (1987) Chem Ing-Tech 59: 701

    Google Scholar 

  118. Rohner M, Locher G, Sonnleitner B, Fiechter A (1989) J Biotechnol 9: 11

    Google Scholar 

  119. Arnold MA, Ostler TJ (1988) Crit Rev Anal Chem 20: 149

    Google Scholar 

  120. Schügerl K (1991) Analytische Methoden in der Biotechnologie. Vieweg, Braunschweig

    Google Scholar 

  121. Münch T, Sonnleitner B, Fiechter A (1992) J Biotechnol 22: 329

    Google Scholar 

  122. Münch T, Sonnleitner B, Fiechter A (1992) J Biotechnol 24: 299

    Google Scholar 

  123. Battley EH (1960) Physiol Plant 13: 628

    Google Scholar 

  124. Boe I, Loverien R (1990) Biotechnol Bioeng 35: 1

    Google Scholar 

  125. Eriksson R, Holme J (1977) Flow microcalorimetry applied to microbial processes. LKB Application Note No. 267, LKB Produkter AB, Stockholm

    Google Scholar 

  126. Shaarachmidt B, Lamprecht I (1976) Experientia 32: 1230

    Google Scholar 

  127. Lamprecht I (1980) Growth and metabolism in yeast. In: Beezer AE (ed) Biological microcalorimetry. Academic, London, p 43

    Google Scholar 

  128. Miles RJ, Beezer AE, Perry BF (1987) Growth and metabolism of yeast. In: James AM (ed) Thermal and energetic studies of cellular biological systems. John Wright, Bristol, p 106

    Google Scholar 

  129. Cooney CL, Wang DIC, Mateles RJ (1968) Biotechnol Bioeng 11: 269

    Google Scholar 

  130. Mou D-G, Cooney CL (1976) Biotechnol Bioeng 18: 1371

    Google Scholar 

  131. Wang H, Wang DIC, Cooney CL (1978) Eur J Appl Microbiol Biotechnol 5: 207

    Google Scholar 

  132. Marison IW, Biron B, von Stockar U (1985) Thermochim Acta 85: 493

    Google Scholar 

  133. Volesky B, Luong HT, Thambimuthu KB (1978) Can J Chem Eng 56: 534

    Google Scholar 

  134. Luong JHT, Volesky B (1982) Can J Chem Eng 60: 163

    Google Scholar 

  135. Fardeau M-L, Plasse F, Belaich JP (1980) Eur J Appl Microbiol Biotechnol 10: 133

    Google Scholar 

  136. Gustafsson K, Gustafsson L (1985) J Microbiol Meth 4: 103

    Google Scholar 

  137. von Stockar U, Marison IW, Birou B (1988) On-line calorimetry for process control. In: 1st Swiss-Japanese Joint Meeting on Bioprocess Development, Interlaken, Switzerland

    Google Scholar 

  138. Zabriskie DW, Humphrey AE (1978) Appl Environ Microbiol 35: 337

    Google Scholar 

  139. Scheper T, Lorenz T, Schmid W, Schügerl K (1986) J Biotechnol 3: 231

    Google Scholar 

  140. Meyer HP, Beyeler W, Fiechter A (1984) J Biotechnol 1: 341

    Google Scholar 

  141. Armiger WB, Forro JF, Montalavo LM, Lee JF (1989) Chem Eng Comm 45: 197

    Google Scholar 

  142. Leist C, Meyer HP, Fiechter A (1986) J Biotechnol 4: 235

    Google Scholar 

  143. Reardon KF, Scheper T, Bailey JE (1987) Biotechnol prog 3: 153

    Google Scholar 

  144. Siano SA, Muthrasan R (1991) Biotechnol Bioeng 37: 141

    Google Scholar 

  145. Walker CC, Dhurjati P (1989) Biotechnol Bioeng 33: 500

    Google Scholar 

  146. Sonnleitner B, Locher G, Fiechter A (1992) J Biotechnol 25: 5

    Google Scholar 

  147. Taya M, Yoshikawa M, Kobayashi T (1989) J Chem Eng Japan 22: 89

    Google Scholar 

  148. Beyeler W, Einsele A, Fiechter A (1981) Eur J Appl Microbiol Biotechnol 13: 10

    Google Scholar 

  149. Müller W, Wehnert G, Scheper T (1988) Anal Chim Acta 213: 47

    Google Scholar 

  150. van Bruggen JJA, Stum CK, Vogels GD (1983) Arch Microbiol 136: 89

    Google Scholar 

  151. van Bruggen JJA, Stum CK, Zwart KB, Vogels GD (1985) FEMS Microb Ecol 31: 187

    Google Scholar 

  152. Peck MW, Chynoweth DP (1990) Biotechnol Lett 10: 17

    Google Scholar 

  153. Peck MW, Chynoweth DP (1992) Biotechnol Bioeng 39: 1151

    Google Scholar 

  154. Richards JCS, Jason AC, Hobbs G, Gibson DM, Christie RH (1978) J Phys 11: 560

    Google Scholar 

  155. Hagen D (1990) Proc Biochem 25: 4

    Google Scholar 

  156. Fehrenbach R, Comberbach M, Petre JO (1992) J Biotechnol 23: 303

    Google Scholar 

  157. Davey CL, Penaloza W, Kell DB, Hedger JN (1991) World J Microbiol Biotechnol 7: 248

    Google Scholar 

  158. Markx GH, Ten Hoopen HJG, Meijer JJ, Vinke KL (1991) J Biotechnol 19: 145

    Google Scholar 

  159. Connolly P, Lewis SJ, Corry JEL (1988) J Food Microbiol 7: 3

    Google Scholar 

  160. Taya M, Hegglin M, Prenosil JE, Bourne JR (1989) Enzyme Microb Technol 11: 170

    Google Scholar 

  161. Evans HAV (1982) J Appl Bacteriol 53: 423

    Google Scholar 

  162. Ebina Y, Ekida M, Hoshimoto H (1989) Biotechnol Bioeng 33: 1290

    Google Scholar 

  163. Henschkke PA, Thomas DS (1988) J Appl Bacteriol 64: 123

    Google Scholar 

  164. Harris CM, Kell DB (1985) Biosensors 1: 17

    Google Scholar 

  165. Sakoto K, Tanaka H, Samejima H (1981) Ann NY Acad Sci 369: 321

    Google Scholar 

  166. Ding T, Schmid RD (1990) Anal Chim Acta 234: 237

    Google Scholar 

  167. Harris CM, Todd RW, Bungard SJ, Lovitt RW, Morris JG, Kell DB (1987) Enzyme Microb Technol 9: 181

    Google Scholar 

  168. Kell D, Markx GH, Davey CL, Todd RW (1990) Trend Anal Chem 9: 190

    Google Scholar 

  169. Hong K, Tanner RD, Malaney GW, Wilson DJ (1987) Proc Biochem 22: 149

    Google Scholar 

  170. Geppert G, Thielemann H, Langkopf G (1989) Acta Biotechnol 9: 541

    Google Scholar 

  171. Iijima S, Yamashita S, Matsunaga K, Miura H, Morikawa M (1987) J Chem Technol Biotechnol 40: 203

    Google Scholar 

  172. Nielsen J, Nikolajsen K, Benthia S, Villadsen J (1990) Anal Chim Acta 237: 165

    Google Scholar 

  173. Valero F, Lafuente J, Poch M, Sola C (1990) Appl Biochem Biotechnol 24: 591

    Google Scholar 

  174. Heinzle E, Moes J, Griot M, Sandmeier E, Dunn IJ, Bucher R (1986) Ann NY Acad Sci 469: 178

    Google Scholar 

  175. Wilson PDG (1987) Biotechnol Tech 1: 151

    Google Scholar 

  176. Roels JA (1980) Biotechnol Bioeng 27: 2457

    Google Scholar 

  177. Locher G, Sonnleitner B, Fiechter A (1992) J Biotechnol 25: 55

    Google Scholar 

  178. StrÄssle C, Sonnleitner B, Fiechter A (1988) J Biotechnol 7: 299

    Google Scholar 

  179. StrÄssle C, Sonnleitner B, Fiechter A (1989) J Biotechnol 9: 191

    Google Scholar 

  180. Park SH, Hong KJ, Lee JH, Bae JC (1983) Eur J Appl Microbiol Biotechnol 17: 168

    Google Scholar 

  181. Sonnleitner B (1991) Bioproc Eng 6: 187

    Google Scholar 

  182. Sonnleitner B, Fiechter A (1992) Adv Biochem Eng/Biotechnol 46: 143

    Google Scholar 

  183. Chattaway T, Demain AL, Stephanopoulos G (1992) Biotechnol Prog 8: 81

    Google Scholar 

  184. Thomas DC, Chittur VK, Cagney JW, Lim HC (1985) Biotechnol Bioeng 27: 729

    Google Scholar 

  185. Reuss M, Boelcke C, Lenz R, Peckman U (1987) Biotech Forum 4: 3

    Google Scholar 

  186. Blake-Coleman BC, Clarke DJ, Calder MR, Moody SC (1986) Biotechnol Bioeng 28: 1241

    Google Scholar 

  187. Clarke DJ, Blake-Coleman BC, Carr RJG, Calder MR, Atkinson T (1986) Trend Biotechnol 4: 173

    Google Scholar 

  188. Kilburn DG, Fitzpatrick P, Blake-Coleman BC, Clarke DJ, Griffiths JB (1989) Biotechnol Bioeng 33: 1379

    Google Scholar 

  189. Cavinato AG, Ge Z, Mayes DM, Callis JB (1990) A biomass sensor based on visible and short wavelength near infrared spectroscopy, 3rd International Symposium Analytical Methods in Biotechnology, San Francisco

    Google Scholar 

  190. Gordon SH, Greene RV, Freer SN, James C (1990) Biotechnol Appl Biochem 12: 1

    Google Scholar 

  191. Manoharan R, Ghiamati E, Dalterio RA, Britton KA, Nelson WH, Sperry JF (1990) J Microbiol Meth 11: 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Singh, A., Kuhad, R.C., Sahai, V., Ghosh, P. (1994). Evaluation of biomass. In: Biotechnics/Wastewater. Advances in Biochemical Engineering/Biotechnology, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008733

Download citation

  • DOI: https://doi.org/10.1007/BFb0008733

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57319-7

  • Online ISBN: 978-3-540-48062-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics