The relief indicator method as a new approach to constrained global optimization

  • Hoang Tuy
Nonlinear Optimization
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 143)


Global Optimization Feasible Point Global Optimal Solution Affine Function Outer Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.H. Chew and Q. Zheng, Integral global optimization. Lecture Notes in Economics and Math. Systems 298(1988).Google Scholar
  2. 2.
    Y.M. Danilin and S.A. Piyavskii, On an algorithm for finding an absolute minimum. In " Theory of Optimal Decisions ", Kiev, IK AN USSR 1967, 25–37 (in Russian).Google Scholar
  3. 3.
    Y.G. Evtushenko, Numerical methods for finding the global extremum of a function. USSR Comput. Maths. Math. Phys. 11(1971),38–54.Google Scholar
  4. 4.
    J.E. Falk and R.M. Soland, An algorithm for separable nonconvex programming problems, Management Science 15(1969), 550–569.Google Scholar
  5. 5.
    F. Forgo, Nonconvex programming, Akademiai Kiado, Budapest (1988).Google Scholar
  6. 6.
    R.P. Ge and Y.F. Qin, A class of filled functions for finding global minimizers of a function of several variables, Journal of Optimization Theory and Applications 54(1987), 241–252.Google Scholar
  7. 7.
    A.O. Griewank, Generalized descent for global optimization, Journal of Optimization Theory and Applications 34(1981), 11–39.Google Scholar
  8. 8.
    E. Hansen, Global optimization using interval analysis-the one-dimensional case, Journal of Optimization Theory and Applications 29 (1979), 331–344.Google Scholar
  9. 9.
    E. Hansen, Global optimization using interval analysis-the multi-dimensional case, Numerische Mathematik 34(1980), 247–270.Google Scholar
  10. 10.
    R. Horst and H. Tuy, Constrained global optimization (deterministic approach), Springer Verlag 1990.Google Scholar
  11. 11.
    R. Horst and N.V. Thoai, Modification, implementation and comparison of three algorithms for globally solving linearly constrained concave minimization problems, Computing 42(1989), 271–289.Google Scholar
  12. 12.
    A.V. Levy and A. Montalvo, The tunneling algorithm for the global minimization of functions, SIAM Journal Sci. Stat. Comput. 6(1985), 15–29.Google Scholar
  13. 13.
    G.P. McCormik, Computability of global solutions to factorable nonconvex programs. Part I: Convex underestimating problems, Mathematical Programming 10(1976), 147–175.Google Scholar
  14. 14.
    G.P. McCormik, Nonlinear programming: theory, algorithms and applications, John Wiley & Sons, New York 1983.Google Scholar
  15. 15.
    K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Mathematical Programming 39(1987) 117–130Google Scholar
  16. 16.
    P.M. Pardalos and J.B. Rosen, Constrained global optimization: algorithms and applications. Lecture Notes in Computer Science 268, Springer 1987.Google Scholar
  17. 17.
    S.A. Pijavskii, An algorithm for finding the absolute extremum of a function, USSR Comput. Maths. Math. Phys. 12(1972), 57–67.Google Scholar
  18. 18.
    H. Ratschek and J. Rokne, New computer methods for global optimization, Halsted Press, New York 1988.Google Scholar
  19. 19.
    B.O. Shubert, A sequential method seeking the global minimum of a function, SIAM Journal on Numerical Analysis 9(1972), 379–388.Google Scholar
  20. 20.
    R.M. Soland, An algorithm for separable nonconvex programming II: nonconvex constraints, Management Science 17(1971), 759–773.Google Scholar
  21. 21.
    P.T. Thach and H. Tuy, The relief indicator method for constrained global optimization, Naval Research Logistics 1989 (to appear).Google Scholar
  22. 22.
    H. Tuy, Concave programming under linear constraints, Doklady AN SSSR 159(1964), 32–35. Translated Soviet Math. 5(1964), 1437–1440.Google Scholar
  23. 23.
    H. Tuy, Normal conical algorithm for concave minimization over polytopes 1988 (submitted).Google Scholar
  24. 24.
    H. Tuy, Concave minimization and constrained nonsmooth global optimization, Preprint, Institute of Mathematics, Hanoi, 1988 (submitted).Google Scholar
  25. 25.
    H. Tuy and R. Horst, Convergence and restart in branch and bound algorithms for global optimization, Application to concave minimization and dc-optimization problems, Mathematical Programming 41(1988), 161–183.Google Scholar

Copyright information

© International Federation for Information Processing 1990

Authors and Affiliations

  • Hoang Tuy
    • 1
  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations