Skip to main content

Solving non-cooperative games by continuous subgradient projection methods

  • Nonlinear Optimization
  • Conference paper
  • First Online:
System Modelling and Optimization

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 143))

Abstract

This paper applies a continuous-time version of the subgradient projection algorithm to find equlibria of non-cooperative games. Under monotonicity assumptions this algorithm is known to generate trajectories which Cesaro converge weakly to the solution set. Convergence in norm is established under a strict montonicity assumption. Strong monotonicity is shown to entail norm convergence at an exponential rate. A sharpness condition yields norm convergence in finite time, and the necessary lapse is estimated.

This research has been partially supported by Ruhrgas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Antipin: "Neprerivnie i iterativnie proctcecci c opertorami proektirovania i tipa proektirvanija", (Cont inuous and iterative processes using projection and projection type operators), Voproci Kibernetiki, Moskva, 5–43 (1989).

    Google Scholar 

  2. J.P. Aubin, L'analyse nonlinéaire et ses motivations économiques, Masson, Paris (1984).

    Google Scholar 

  3. J.P. Aubin and A. Cellina. Differential Inclusions, Springer Verlag, Berlin (1984)

    Google Scholar 

  4. D.P. Bertsekas, "On the Goldstein-Levitin-Polyak gradient projection method, IEEE Trans. on Automatic Control 21, 174–184 (1976).

    Google Scholar 

  5. P.H. Calamai and J.J. Moré. Projected gradient methods for linearly constrained problems, Mathematical Programming 39, 93–116 (1987).

    Google Scholar 

  6. J.C. Dunn, "Global and asymptotic convergence rate estimates for a class of projected gradient processes". SIAM J. Control and Optimization 19, 368–400 (1981).

    Google Scholar 

  7. I. Ekeland and R. Temam, Analyse convexe et problèmes variationelles, Dunod, Paris (1974).

    Google Scholar 

  8. Yu. G. Evtushenko and V.G. Zhadan, "Application of the method of Luapunov functions to the study of the convergence of numerical methods", U.S.S.R. Comput. Math. Phys., vol. 15, no. 1, 96–108 (1975).

    Google Scholar 

  9. Yu. G. Evtushenko, Numerical Optimization Techniques, Optimization Software, New York (1985).

    Google Scholar 

  10. S.D. Flåm and A. Ben-Israel, "Approximating saddle points as equilibria of differential inclusions", J. of Math. Anal. Applic., vol. 141, no. 1, 264–277 (1989).

    Google Scholar 

  11. S.D. Flåm, "On finite convergence and constraint identification of subgradient projection methods", RUTCOR Res. Rep., no. 7 (1989).

    Google Scholar 

  12. A.A. Goldstein, "Convex programming in Hilbert space" Bull of Am. Math. Soc 70, 709–710 (1984).

    Google Scholar 

  13. E.S. Levitin and B.T. Polyak; "Constrained minimization problems", USR Computational Math. and Math. Physics 6, 1–50 (1966).

    Google Scholar 

  14. B.T. Polyak, Introduction to Optimization Optimization Software, Inc. Publications Div., New York (1987).

    Google Scholar 

  15. N.Z. Shor, Minimization methods for non-differentiable functions, Springer Verlag (1985).

    Google Scholar 

  16. V.I. Venets and M.V. Rybashov, "The method of Lyapunov functions in the study of continuous algorithms of mathematical programming", U.S.S.R. Comput. Math. Math. Phys., vol.17, no.3, 64–77 (1977).

    Google Scholar 

  17. V.I. Venets, "Stability of continuous algorithms for solving convex constrained minimization problems using projection onto the admissible set," Automation and Remote Control, vol. 44, no. 1, 18–23 (1983).

    Google Scholar 

  18. V.I. Venets, "Continuous algorithms for solution of convex constrained minimization problems and finding saddle points of convex-concave functions with the use of projection operators," Optimization, vol. 16, no. 4, 519–533 (1985).

    Google Scholar 

  19. E.H. Zarantonello, "Projections on convex sets in Hilbert space and spectoral theory", in E.H. Zarantello ed. Contr. to Nonlinear Funct. Anal Acad. press, N.Y. (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -J. Sebastian K. Tammer

Rights and permissions

Reprints and permissions

Copyright information

© 1990 International Federation for Information Processing

About this paper

Cite this paper

Flåm, S.D. (1990). Solving non-cooperative games by continuous subgradient projection methods. In: Sebastian, H.J., Tammer, K. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008361

Download citation

  • DOI: https://doi.org/10.1007/BFb0008361

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52659-9

  • Online ISBN: 978-3-540-47095-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics