Advertisement

Convolution and fourier transform of hida distributions

  • Hui-Hsiung Kuo
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 176)

Keywords

White Noise Gaussian White Noise Japan Acad Finite Dimensional Case Wick Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gross, L.: Potential theory on Hilbert space; J. Func. Anal. 1 (1967) 123–181Google Scholar
  2. [2]
    Hida, T.: Analysis of Brownian Functionals. Carleton Mathematical Lecture Notes, no.13 (1975)Google Scholar
  3. [3]
    Hida, T.: Brownian motion and its functionals; Ricerche di Matematica 34 (1985) 183–222Google Scholar
  4. [4]
    Hida, T. and Ikeda, N.: Analysis on Hilbert space with reproducing kernel arising from multiple Wiener integral; Proc. Fifth Berkeley Symp. Math Stat. Probab. 2 (1965) 117–143.Google Scholar
  5. [5]
    Hida, T., Kuo, H.-H., Potthoff, J. and Streit, L.: White Noise: An Infinite Dimensional Calculus. Monograph in preparationGoogle Scholar
  6. [6]
    Hida, T. and Potthoff, J.: White noise analysis — an overview; in: White Noise Analysis — Mathematics and Applications, T. Hida, H.-H. Kuo, J. Potthoff and L. Streit (eds.), (1990) 140–165, World ScientificGoogle Scholar
  7. [7]
    Hida, T. and Saitô, K.: White noise analysis and the Lévy Laplacian; in: Stochastic Processes in Physics and Engineering, S. Albeverio etc.(eds.), (1988) 177–184Google Scholar
  8. [8]
    Ito, Y., Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise and Kuo's Fourier transformation; in: White Noise Analysis-Mathematics and Applications, T. Hida, H.-H. Kuo, J. Potthoff and L. Streit (eds.), (1990) 180–207, World ScientificGoogle Scholar
  9. [9]
    Kondrat'ev, Yu. G.: Nuclear spaces of entire functions in problems of infinite-dimensional analysis; Soviet Math. Dokl. 22 (1980) 588–592Google Scholar
  10. [10]
    Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise I; Proc. Japan Acad. 56A (1980) 376–380Google Scholar
  11. [11]
    Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise II; Proc. Japan Acad. 56A (1980) 411–416Google Scholar
  12. [12]
    Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise III; Proc. Japan Acad. 57A (1981) 433–437Google Scholar
  13. [13]
    Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise IV; Proc. Japan Acad. 58A (1982) 186–189Google Scholar
  14. [14]
    Kubo, I. and Yokoi, Y.: A remark on the space of testing random variables in the white noise calculus; Nagoya Math. J. 115 (1989) 139–149Google Scholar
  15. [15]
    Kuo, H.-H.: Gaussian Measures in Banach Spaces. Lecture Notes in Math., Vol. 463. Berlin, Heidelberg, New York: Springer-Verlag (1975)Google Scholar
  16. [16]
    Kuo, H.-H.: On Fourier transform of generalized Brownian functionals; J. Multivariate Anal. 12 (1982) 415–431Google Scholar
  17. [17]
    Kuo, H.-H.: The Fourier transform in white noise calculus; J. Multivariate Analysis 31 (1989) 311–327Google Scholar
  18. [18]
    Kuo, H.-H.: Lectures on white noise analysis; Preprint (1990)Google Scholar
  19. [19]
    Lee, Y.-J.: Analytic version of test functionals, Fourier transform and a characterization of measures in white noise calculus; Preprint (1989), to appear in J. Funct. Anal. Google Scholar
  20. [20]
    Meyer, P.A. and Yan, J.A.: A propos des distributions sur l'espace de Wiener; Séminaire de Probabilités XXI; J. Azéma and M. Yor (ed.s). Berlin, Heidelberg, New York: Springer (1987)Google Scholar
  21. [21]
    Obata, N.: Analysis of the Lévy Laplacian; Soochow J. Math. 14 (1988) 105–109Google Scholar
  22. [22]
    Obata, N.: A characterization of the Lévy Laplacian in terms of infinite dimensional rotation groups; Nagoya Math. J. 118 (1990) 111–132Google Scholar
  23. [23]
    Potthoff, J and Streit, L.: A characterization of Hida distributions; Preprint (1989), to appear in J. Funct. Anal. Google Scholar
  24. [24]
    Potthoff, J. and Streit, L.: Generalized Radon-Nikodym derivatives and Cameron-Martin theory; Preprint (1990), to appear in Proc. Int. Conf. Gaussian Random Fields, Nagoya, 1990Google Scholar
  25. [25]
    Potthoff, J. and Yan J.A.: Some results about test and generalized functionals of white noise; to appear in: Proc. Singapore Probab. Conf. (1989), L.Y. Chen (ed.)Google Scholar
  26. [26]
    Yokoi, Y.: Positive generalized white noise functionals; Hiroshima Math. J. 20 (1990) 137–157Google Scholar

Copyright information

© International Federation for Information Processing 1992

Authors and Affiliations

  • Hui-Hsiung Kuo
    • 1
  1. 1.Department of MathematicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations