Skip to main content

Generalized stochastic differential equations on (D*)

  • 215 Accesses

Part of the Lecture Notes in Control and Information Sciences book series (LNCIS,volume 176)

This is a preview of subscription content, access via your institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betounes, D. and Redfern, M.: Wiener distributions and white noise analysis, Appl. Math. Optim. (to appear).

    Google Scholar 

  2. Betounes, D. and Redfern, M.: Stochastic integrals for non-previsible, multiparameter processes, (preprint).

    Google Scholar 

  3. Kuo, H.-H., Lectures on white noise analysis, Proc. Preseminar Int. Conf. Gaussian random fields (1991) T. Hida and K. Saito (eds.) 1–65.

    Google Scholar 

  4. Kuo, H.-H., and Potthoff, J., Anticipating stochastic integrals and stochastic differential equations, White Noise Analysis — Mathematics and Applications, T. Hida, H.-H. Kuo, J. Potthoff, L. Streit (eds.) (1990) 256–273, World Scientific.

    Google Scholar 

  5. Ocone, D., Anticipating stochastic calculus and applications. White Noise Analysis — Mathematics and Applications T. Hida, H.-H. Kuo, J. Potthoff, L. Streit (eds.) (1990) 298–314, World Scientific.

    Google Scholar 

  6. Ocone, D. and Pardoux E., Linear stochastic differential equations with boundary conditions, Probab. Th. Rel. Fields 82 (1989) 48i–526.

    Google Scholar 

  7. Ocone, D., and Pardoux E., A generalized Ito — Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. H. Poincare Probab. Statist. 25 (1989) 39–71.

    Google Scholar 

  8. Pardoux, E. and Protter P., Stochastic Volterra equations with anticipating coefficients, Ann. Probab. 18 (1990) 1635–1655.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 International Federation for Information Processing

About this paper

Cite this paper

Betounes, D. (1992). Generalized stochastic differential equations on (D*). In: Rozovskii, B.L., Sowers, R.B. (eds) Stochastic Partial Differential Equations and Their Applications. Lecture Notes in Control and Information Sciences, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0007317

Download citation

  • DOI: https://doi.org/10.1007/BFb0007317

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55292-5

  • Online ISBN: 978-3-540-47015-1

  • eBook Packages: Springer Book Archive