Abstract
This paper deals with approximation schemes for infinite horizon, discrete time, stochastic optimization problems. We construct finite horizon approximates that yield upper and lower estimates and whose optimal solutions converge to long-term optimal trajectories. The results extend those of [3] from the deterministic case to the stochastic.
This is a preview of subscription content, log in via an institution.
Preview
Unable to display preview. Download preview PDF.
References
Attouch, H. (1984). Variational convergence for functions and operators. Pitman Research Notes, London.
Diestel, J. (1984). Sequences and series in Banach Spaces. Springer Verlag, New York.
Flåm, S.D., and Wets, R.J.-B. (1984). Existence results and finite horizon approximations of inifinite horizon optimization problems. Rep.No. 842555-1, CMI, Bergen, Norway.
Flåm, S.D., and Wets, R.J.-B. (1984). Infinite horizon discrete time stochastic Bolza type problems: Existence results. Rep.No. 842650-1, Bergen, Norway.
Grinold, R. (1983). Finite horizon approximations of infinite horizon programs. Mathematical Programming, 25, pp. 64–82.
Rockafellar, R.T. (1970). Convex Analysis. Princeton University Press, Princeton.
Rockafellar, R.T., and Wets, R.J.-B. (1984). Variational systems, an introduction. Rep.No. 8405, CEREMADE, Univ. Paris-Dauphine.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1986 International Institute for Applied Systems Analysis
About this paper
Cite this paper
Flåm, S.D., Wets, R.JB. (1986). Finite horizon approximates of infinite horizon stochastic programs. In: Arkin, V.I., Shiraev, A., Wets, R. (eds) Stochastic Optimization. Lecture Notes in Control and Information Sciences, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0007111
Download citation
DOI: https://doi.org/10.1007/BFb0007111
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-16659-7
Online ISBN: 978-3-540-39841-7
eBook Packages: Springer Book Archive
