Abstract
Given a finite set E and a real valued function f on P(E) (the power set of E) the optimal subset problem (P) is to find S ⊂ E maximizing f over P(E). Many combinatorial optimization problems can be formulated in these terms. Here, a family of approximate solution methods is studied : the greedy algorithms.
After having described the standard greedy algorithm (SG) it is shown that, under certain assumptions (namely : submodularity of f) the computational complexity of (SG) can often be significantly reduced, thus leading to an accelerated greedy algorithm (AG). This allows treatment of large scale combinatorial problems of the (P) type. The accelerated greedy algorithm is shown to be optimal (interms of computational complexity) over a wide class of algorithms, and the submodularity assumption is used to derive bounds on the difference between the greedy solution and the optimum solution.
Keywords
- Greedy Algorithm
- Minimum Span Tree
- Combinatorial Optimization Problem
- Fixed Charge
- Span Tree Problem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Preview
Unable to display preview. Download preview PDF.
References
MINOUX (M.) "Multiflots de coût minimum avec fonctions de coût concaves". Annales des télécommunications, 31, no 3–4, (1976)
MINOUX (M.) "Algorithmes gloutons et algorithmes glotons accélérés pour la résolution des grands problèmes combinatoires". Bulletin de la Direction des Etudes et Recherches — EDF (France) Série C No 1 (1977) pp.41–58
LAURIERE (J.L.) "Un langage et un programme pour énoncer et résoudre des problèmes combinatoires" — Thèse, doc.ès sciences. Université PARIS VI — Mai 1976
KRUSKAL (J.B.) "On the shortest spanning subtree of a graph and the travelling salesman problem" — Proc. Am. Math. Soc. 2 (1956) pp. 48–50
EDMONDS (J.) "Matroids and the greedy algorithm" — Mathematical programming 1, (1971), pp. 127–136.
GONDRAN (M.) "L'algorithme glouton dans les algèbres de chemins" Bulletin Dir. Et. Rech. EDF Série C No 1 (1975) pp.25–32
BILLHEIMER (J.W.) GRAY (P.) "Network design with fixed and variable cost elements". Transp. Science 7, no 1 (1973) pp. 49–74
LEGROS (J.F.) MINOUX (M.) OUSSET (A.) "Local networks optimization" Proc. ISSLS Conference London (May 1976)
COOPER (L.) "The transportation location problem" Ops. Res. 20, no 1 (1972) pp. 94–108
KUENNE (R.E.) SOLAND (R.M.) "Exact and approximate solutions to the multisource weber problem". Mathematical programming 3 (1972) pp. 193–209.
STEINBERG (D.I.) "The fixed charge problem" — Nav. Res. Log. Quart. 17 (1970) pp. 217–236.
BALINSKY (M.L.) "Fixed Cost Transportation Problems" — Nav. Res. Log. Quart. 8 (1961) pp. 41–54
MALEK-ZAVARET (M.), FRISCH (I.T.) "On the fixed cost flow problem" Intern.Journal Control 16, no 5, (1972), pp. 897–902
EDMONDS (J.) "Submodular functions, matroids, and certain polyhedra" in: Combinatorial structures and their applications, R. Guy ed. pp.69–87 Gordon and Breach 1971.
FISCHER (M.L.) NEMHAUSER (G.L.) WOLSEY (L.A.) "An analysis of approximations for maximizing submodular set functions" IX Internat. Symp. on Mathematical Programming BUDAPEST Hungary (1976).
SAVAGE (S.L.) "Some theoretical implications of local optimization" Mathematical Programming 10 (1976) pp. 354–366.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1978 Springer-Verlag
About this paper
Cite this paper
Minoux, M. (1978). Accelerated greedy algorithms for maximizing submodular set functions. In: Stoer, J. (eds) Optimization Techniques. Lecture Notes in Control and Information Sciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0006528
Download citation
DOI: https://doi.org/10.1007/BFb0006528
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-08708-3
Online ISBN: 978-3-540-35890-9
eBook Packages: Springer Book Archive