# Accelerated greedy algorithms for maximizing submodular set functions

• Michel Minoux
Integer Programming, Networks
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 7)

## Abstract

Given a finite set E and a real valued function f on P(E) (the power set of E) the optimal subset problem (P) is to find S ⊂ E maximizing f over P(E). Many combinatorial optimization problems can be formulated in these terms. Here, a family of approximate solution methods is studied : the greedy algorithms.

After having described the standard greedy algorithm (SG) it is shown that, under certain assumptions (namely : submodularity of f) the computational complexity of (SG) can often be significantly reduced, thus leading to an accelerated greedy algorithm (AG). This allows treatment of large scale combinatorial problems of the (P) type. The accelerated greedy algorithm is shown to be optimal (interms of computational complexity) over a wide class of algorithms, and the submodularity assumption is used to derive bounds on the difference between the greedy solution and the optimum solution.

## Keywords

Greedy Algorithm Minimum Span Tree Combinatorial Optimization Problem Fixed Charge Span Tree Problem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

1. [1]
MINOUX (M.) "Multiflots de coût minimum avec fonctions de coût concaves". Annales des télécommunications, 31, no 3–4, (1976)Google Scholar
2. [2]
MINOUX (M.) "Algorithmes gloutons et algorithmes glotons accélérés pour la résolution des grands problèmes combinatoires". Bulletin de la Direction des Etudes et Recherches — EDF (France) Série C No 1 (1977) pp.41–58Google Scholar
3. [3]
LAURIERE (J.L.) "Un langage et un programme pour énoncer et résoudre des problèmes combinatoires" — Thèse, doc.ès sciences. Université PARIS VI — Mai 1976Google Scholar
4. [4]
KRUSKAL (J.B.) "On the shortest spanning subtree of a graph and the travelling salesman problem" — Proc. Am. Math. Soc. 2 (1956) pp. 48–50Google Scholar
5. [5]
EDMONDS (J.) "Matroids and the greedy algorithm" — Mathematical programming 1, (1971), pp. 127–136.Google Scholar
6. [6]
GONDRAN (M.) "L'algorithme glouton dans les algèbres de chemins" Bulletin Dir. Et. Rech. EDF Série C No 1 (1975) pp.25–32Google Scholar
7. [7]
BILLHEIMER (J.W.) GRAY (P.) "Network design with fixed and variable cost elements". Transp. Science 7, no 1 (1973) pp. 49–74Google Scholar
8. [8]
LEGROS (J.F.) MINOUX (M.) OUSSET (A.) "Local networks optimization" Proc. ISSLS Conference London (May 1976)Google Scholar
9. [9]
COOPER (L.) "The transportation location problem" Ops. Res. 20, no 1 (1972) pp. 94–108Google Scholar
10. [10]
KUENNE (R.E.) SOLAND (R.M.) "Exact and approximate solutions to the multisource weber problem". Mathematical programming 3 (1972) pp. 193–209.Google Scholar
11. [11]
STEINBERG (D.I.) "The fixed charge problem" — Nav. Res. Log. Quart. 17 (1970) pp. 217–236.Google Scholar
12. [12]
BALINSKY (M.L.) "Fixed Cost Transportation Problems" — Nav. Res. Log. Quart. 8 (1961) pp. 41–54Google Scholar
13. [13]
MALEK-ZAVARET (M.), FRISCH (I.T.) "On the fixed cost flow problem" Intern.Journal Control 16, no 5, (1972), pp. 897–902Google Scholar
14. [14]
EDMONDS (J.) "Submodular functions, matroids, and certain polyhedra" in: Combinatorial structures and their applications, R. Guy ed. pp.69–87 Gordon and Breach 1971.Google Scholar
15. [15]
FISCHER (M.L.) NEMHAUSER (G.L.) WOLSEY (L.A.) "An analysis of approximations for maximizing submodular set functions" IX Internat. Symp. on Mathematical Programming BUDAPEST Hungary (1976).Google Scholar
16. [16]
SAVAGE (S.L.) "Some theoretical implications of local optimization" Mathematical Programming 10 (1976) pp. 354–366.Google Scholar