Advertisement

Gestion D'un Stock Multi-Produits Avec Couts Concaves Et Incitation Aux Lancements Groupes : Une Heuristique

  • Diagne S. 
  • Leopoulos V. I. 
  • J. M. Proth
Session 20 Production Automation
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 63)

Abstract

This paper is devoted to the multi-product lot size model with concave costs, the production cost being joint. We give an heuristic which leads to a "good" solution, the amount of computation being only proportional to N * M, where N is the horizon of the problem and M the number of products involved.

Keywords

Nous Avons Deterministic Environ Concave Cost Nous Proposons Nous Allons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. BENSOUSSAN, M. CROUHY, J.M. PROTH, "Mathematical theory of Production Planning" Advanced Series in Management, North Holland.Google Scholar
  2. (2).
    A. BENSOUSSAN and J.M. PROTH, "Inventory Planning in a Deterministic Environment: Concave Cost set up in Discrete and Continuous Time" Vienna, 81, November.Google Scholar
  3. (3).
    A. BENSOUSSAN and J.M. PROTH, "Gestion de Stocks avec Coûts Concaves" Rairo Automatique/Systems Analysis and Control Vol. 15, no3 pp. 291–220.Google Scholar
  4. (4).
    A. BENSOUSSAN and J.M. PROTH "Production Planning in a Deterministic Environment: Concave and Convex Cost-Planning Horizon", TIMS Congress, Bordeaux (FR), August 82.Google Scholar
  5. (5).
    J.M. PROTH "Problèmes à Coûts Concaves: Notion d'Horizon de planification", Sciences de Gestion, no3, December, 80.Google Scholar
  6. (6).
    H.M. WAGNER and T.M. WITHIN, "Dynamic Version of the Economic lot Size Model," Man. Sc, 10, 1964, 465–471.Google Scholar
  7. (7).
    R.A. LUNDIN and T.E. MORTON "Planning Horizons for the dynamic lot size model: Zabel v.s. protective procedures and computational results", O.R., vol. 13, no1, July–August 1975.Google Scholar
  8. (8).
    L.A. JOHNSON and P.C. MONTGOMERY "Operations Research in Production Planning" Scheduling and Inventory Control, Wiley, New-York, 1974.Google Scholar
  9. (9).
    A. EDWARD SILVER, "Coordinated Replenishments of items under Time-Varying demand: Dynamic Programming Formulation", Naval Research Logistics Quaterly, March, 79, vol. 26, no1.Google Scholar
  10. (10).
    P.C. EDWARD KAO, "A Multi-Product Dynamic lot Size model with individual and Joint Set-up Costs" O.R., vol. 27, no2, Mach–April 1979.Google Scholar
  11. (11).
    J.M. PROTH, "Gestion d'un Stock Multi-Produit avec Coût Concaves et incitation aux Lancements groupés" Analysis and Optimization of Systems, Proceedings of the Fifth International Conference on Analysis and Optimization of Systems, Versailles December 15–17, 1982.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Diagne S. 
    • 1
  • Leopoulos V. I. 
    • 1
  • J. M. Proth
    • 1
  1. 1.Domaine de Voluceau -RocquencourtInriaLe Chesnay CedexFrance

Personalised recommendations