Advertisement

Linearisation par diffeomorphisme et immersion des systemes

  • Daniel Claude
Session 16 Nonlinear Systems I
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 63)

Abstract

In this paper we show that the linearization of a nonlinear dynamics via coordinate transformations is in fact a particular case of a linearization by "immersion" which was introduced recently (D. Claude, M. Fliess, A. Isidori, C.R. Acad. Sc. Paris, 296, Série I, 1983). We establish that the linearization by diffeomorphism is related directly to the "characteristic numbers" also known as "differential indices" that are used in nonlinear decoupling too.

Keywords

Nonlinear System Differential Index Module Math Application Pratique Linear Multivariable Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    R.W. BROCKETT, Feedback invariants for nonlinear systems, Proc. VIIth I.F.A.C. World Congr., Helsinski, 1115–1120 (1978)Google Scholar
  2. [2]
    P. BRUNOVSKY, A classification of linear controllable systems, Kybernetica cislo 3, 173–188 (1970)Google Scholar
  3. [3]
    Y. CHOQUET-BRUHAT, Géométrie différentielle et systèmes extérieurs, Dunod, Paris (1968)Google Scholar
  4. [4]
    D. CLAUDE, Decoupling of nonlinear systems, Systems Control Lett., 1, 242–248 (1982)Google Scholar
  5. [5]
    D. CLAUDE, Découplage des systèmes: du linéaire au non linéaire, dans "Développements et utilisations d'outils et modèles mathématiques en automatique, analyse de systèmes et traitement du signal", vol. 3, I.D. Landau ed., C.N.R.S., Paris, 533–555 (1983)Google Scholar
  6. [6]
    D. CLAUDE, Découplage des systèmes non linéaires, séries génératrices non commutatives et algèbres de Lie, à paraîtreGoogle Scholar
  7. [7]
    D. CLAUDE, M. FLIESS et A. ISIDORI, Immersion, directe et par bouclage, d'un système non linéaire dans un linéaire, C.R. Acad. Sc. Paris, 296, série I, 237–240 (1983)Google Scholar
  8. [8]
    F. CSÁKI, Modern Control Theories, Akadémiai Kiedò, Budapest (1972)Google Scholar
  9. [9]
    J. DESCUSSE, Les invariants fondamentaux d'une paire (A,B), leurs liens avec certaines formes canoniques, dans "Outils et modèles mathématiques pour l'automatique, l'analyse de systèmes et le traitement du signal, vol. 1, I.D. Landau ed., C.N.R.S., Paris, 65–86 (1981)Google Scholar
  10. [10]
    M. FLIESS, Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France, 109, 3–40 (1981)Google Scholar
  11. [11]
    M. FLIESS, Finite-dimensional observations-spaces for nonlinear systems, in Feedback Control of Linear and Nonlinear Systems, D. Hinrichsen et A. Isidori, ed., Lect. Notes Control Informat. Sc., 39, Springer-Verlag, 73–77 (1982)Google Scholar
  12. [12]
    M. FLIESS et I. KUPKA, A finiteness criterion for nonlinear inputoutput differential systems, S.I.A.M. J. Control Optimiz., 21, 721–728 (1983)Google Scholar
  13. [13]
    L.R. HUNT et R. SU, Global mapping of nonlinear Systems, Proc. Joint Automatic Control Conference, Charlottesville, VA, USA, série FA. 3C, 2, 1–5 (1981)Google Scholar
  14. [14]
    A. ISIDORI et A.J. KRENER, On Feedback equivalence of nonlinear Systems, Systems Control Lett., 2, 118–121 (1982)Google Scholar
  15. [15]
    B. JAKUBCZYK et W. RESPONDEK, On linearization of control systems, Bull. Acad. Polon. Sc. (Math.), 28, 517–522 (1980)Google Scholar
  16. [16]
    A.J. KRENER, On the equivalence of control systems and the linearization of nonlinear systems, S.I.A.M. J. Control, 11, 670–676 (1973)Google Scholar
  17. [17]
    G. MEYER, R. SU et L.R. HUNT, Applications to aeronautics of the theory of transformations of nonlinear systems, dans "Développements et utilisations d'outils et modèles mathématiques en automatique, analyse de systèmes et traitement du signal, vol. 3, I.D. Landau ed., C.N.R.S., Paris, 675–688 (1983)Google Scholar
  18. [18]
    S. MONACO et D. NORMAND-CYROT, The immersion under feedback of a multidimensional discrete-time nonlinear system into a linear system, Int. J. Control, 38, 245–261 (1983)Google Scholar
  19. [19]
    R. SU, On the linear equivalents of nonlinear systems, Systems Control Lett., 2, 48–52 (1982)Google Scholar
  20. [20]
    W.M. WONHAM, Linear Multivariable Control: A Geometric Approach, Springer-Verlag (1977).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Daniel Claude
    • 1
  1. 1.Laboratoire des Signaux et Systèmes, C.N.R.S. — E.S.E. Plateau du MoulonGif-sur-YvetteFrance

Personalised recommendations