Homogenization of bellman equations

  • A. Bensoussan
  • L. Boccardo
  • F. Murat
Control Theory
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 69)


Divergence Form Stochastic Differential Equation Bellman Equation Borel Function Limit Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Bensoussan "Homogenization Theory, Atti del 3° seminario di Analisi funzionale ed applicazioni" Latezza, Bari, 1979.Google Scholar
  2. [2]
    A. Bensoussan-L. Boccardo-F. Murat To be published.Google Scholar
  3. [3]
    A. Bensoussan-J.L. Lions-G. Papanicolaou "Asymptotic Methods in Periodic Structures" North Holland, 1978.Google Scholar
  4. [4]
    L. Boccardo-F. Murat: Homogénisation de problèmes quasi-linéaires, Atti del Convegno "Studio di problemi limite della analisi funzionale" Bressonone 7.9. Sett. 1981, Pitagora Editrice, Bologna (1982) pp. 13–51.Google Scholar
  5. [5]
    J.L. Doob Stochastic Processes Wiley, 1953Google Scholar
  6. [6]
    O.A. Ladyzhenskaya-N.N. Ural'tseva "Equations aux dérivées partielles de type elliptique" Dunod, Paris 1968, Traduit du russe.Google Scholar
  7. [7]
    N.G. Meyers "An LP estimate for the gradient of solutions of second order elliptic divergence equations" Ann. Scu. Normale Sup. Pisa (17) (1963), pp. 189–206.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • A. Bensoussan
    • 1
  • L. Boccardo
    • 2
  • F. Murat
    • 3
  1. 1.University Paris Dauphine and INRIAFrance
  2. 2.University of Rome IIItaly
  3. 3.CNRS, Laboratory d'Analyse NumériqueUniversity Pierre and Marie CurieFrance

Personalised recommendations