Advertisement

A martingale problem for conditional distributions and uniqueness for the nonlinear filtering equations

  • Thomas G. Kurtz
  • Daniel Ocone
Filtering
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 69)

Keywords

Brownian Motion Conditional Distribution Sample Path Local Martingale Martingale Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Echeverria, P. E. (1982). A criterion for invariant measures of Markov processes. Z. Wahrsch. verw. Gebiete 61, 1–16.Google Scholar
  2. 2.
    Ethier, S. N. and Kurtz, T. G. (1985). Markov Processes: Characterization and Convergance (to appear).Google Scholar
  3. 3.
    Fujisaki, M., Kallianpur, G. and Kunita, H. (1972). Stochastic differential equations for the nonlinear filtering problem. Osaka J. Math. 9, 19–40.Google Scholar
  4. 4.
    Lipster, R. S. and Shiryayev, A. N. (1977). The Statistics of Random Processes I: General Theory. Springer-Verlag, Berlin.Google Scholar
  5. 5.
    Pardoux, E. (1979). Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3, 127–167.Google Scholar
  6. 6.
    Pardoux, E. (1982). Equations du filtrage nonlinéaire, de la prediction, et du lissage. Stochastics, 193–232.Google Scholar
  7. 7.
    Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Springer-Verlag, Berlin.Google Scholar
  8. 8.
    Szpirglas, J. (1978). Sur l'equivalence d'equations différentielles stochastique á valeurs mesures intervenant dans le filtrage markovien nonlinéaire. Ann. Inst. Henri Poincaré, XIV, 33–59.Google Scholar
  9. 9.
    Yor, M. (1977). Sur les théories du filtrage et de la prediction. Séminaire de Probabilités XI, Lect Notes in Math 581, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Thomas G. Kurtz
    • 1
  • Daniel Ocone
    • 2
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadison
  2. 2.Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations