Advertisement

Some structural problems examined using the method of moments

  • Jeremy K. Burdett
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 65)

Abstract

The method of moments, a technique used by solid state physicists over the past fifteen years or so, is used to develop a model to understand the global structural preferences of molecules and solids as a function of electron count. The model, of direct use to chemists, has ties to graph theory and its conclusions may be used to view structures in a topological sense by considering the variation in stability of structural fragments with electron polulation. The results cross the traditional borders of chemical endeavor. It is shown how several existing ideas, associated with the domains of organic, inorganic, organometallic and solid-state chemistry, may be phrased in terms of the same fundamental concept using these ideas.

Keywords

Structural Problem Membered Ring Fourth Moment Electron Count Moment Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For example, Albright, T. A., Burdett, J. K., Whangbo, M.-H.: Orbital Interactions in Chemistry, Wiley, 1985Google Scholar
  2. 2.
    For example, Burdett, J. K.: Prog. Solid State Chem. 15, 173 (1984)CrossRefGoogle Scholar
  3. 3.
    Cyrot-Lackmann, F.: Thèse, Orsay, 1968Google Scholar
  4. 4.
    Ducastelle, F., Cyrot-Lackmann, F.: J. Phys. Chem. Solids 31, 1295 (1970); 32, 285 (1971)CrossRefGoogle Scholar
  5. 5.
    Cyrot-Lackmann, F.: J. Phys. Chem. Solids 29, 1235 (1968)CrossRefGoogle Scholar
  6. 6.
    Cyrot-Lackmann, F.: Surf. Sci. 15, 535 (1969)CrossRefGoogle Scholar
  7. 7.
    Gaspard, J.-P., Cyrot-Lackmann, F.: J. Phys. C6, 3077 (1973)Google Scholar
  8. 8.
    Lambin, Ph., Gaspard, J.-P.: Phys. Rev. B26, 4356 (1982)Google Scholar
  9. 9.
    The approach has much akin with the recursion method of solid state physics. For a recent, quite comprehensive work see: The recursion method and its applications, (Pettifor, D. G., Weaire, D. L., Eds.) Springer Series in Solid State Science 58 (1985)Google Scholar
  10. 10.
    Burdett, J. K., Lee, S.: J. Am. Chem. Soc. 107, 3050 (1985)CrossRefGoogle Scholar
  11. 11.
    Burdett, J. K., Lee, S.: J. Am. Chem. Soc. 107, 3063 (1985)CrossRefGoogle Scholar
  12. 12.
    Burdett, J. K., Lee, S., McLarnan, T. J.: J. Am. Chem. Soc. 107, 3083 (1985)CrossRefGoogle Scholar
  13. 13.
    Burdett, J. K., Lee, S.: J. Solid State Chem. 56, 211 (1984)CrossRefGoogle Scholar
  14. 14.
    Burdett, J. K., Lee, S., Sha, W. C.: Croat. Chim. Acta 57, 1193 (1984)Google Scholar
  15. 15.
    Burdett, J. K. in: Molecular Structures and Energetics, (Greenberg, A., Liebman, J. F., Eds.), Verlag Chemie, 1987Google Scholar
  16. 16.
    There is a nice discussion of this problem in: Jones, D. E. H.: The Inventions of Daedalus, Freeman, 1982. The figure of 260,000 carbon atoms is the number calculated for optimal stability. A sixty atom cluster of this type may have been made (see J. Amer. Chem. Soc. 107, 7779 (1985)Google Scholar
  17. 17.
    Krogh-Jesperson, K., Cremer, D., Poppinger, D., Pople, J. A., Schleyer, P. v. R., Chandrasekhar, J.: J. Am. Chem. Soc. 101, 4843 (1979)CrossRefGoogle Scholar
  18. 18.
    See, for example, Burdett, J. K.: Molecular Shapes, Wiley, 1980Google Scholar
  19. 19.
    For example M(O)2X4 (X = CN, CO; M = Mo, w). Lippard, S. J., Russ, B. J.: Inorg. Chem. 6, 1943 (1967); Day, V. W., Hoard, J. L.: J. Am. Chem. Soc. 90, 3374 (1968); Crayston, J. A., Almond, M. J., Downs, A. J., Poliakoff, M., Turner, J. J.: Inorg. Chem. 23, 3051 (1984)CrossRefGoogle Scholar
  20. 20.
    Burdett, J. K.: Inorg. Chem. 24, 2244 (1985)CrossRefGoogle Scholar
  21. 21.
    Burdett, J. K., Albright, T. A.: Inorg. Chem. 18, 2112 (1979)CrossRefGoogle Scholar
  22. 21a.
    Mingos, D. M. P.: J. Organomet Chem. 179, C29 (1979)CrossRefGoogle Scholar
  23. 22.
    Reinen, D., Friebel, C.: Struct. Bond. 37, 1 (1979)Google Scholar
  24. 23.
    Brown, I. D.: Acta Cryst. B33, 1305 (1977)Google Scholar
  25. 24.
    Burdett, J. K.: Inorg. Chem. 20, 1959 (1981)CrossRefGoogle Scholar
  26. 25.
    Gazo, J., Bersuker, I. B., Garaj, J., Kabesova, M., Kohout, J., Langfelderova, M., Melnik, M., Serator, M., Valach, V.: Coord. Chem. Rev. 19, 253 (1976)CrossRefGoogle Scholar
  27. 26.
    Burdett, J. K.: Inorg. Chem. 14, 931 (1975)CrossRefGoogle Scholar
  28. 27.
    Shaik, S. S., Hiberty, P. C.: J. Am. Chem. Soc. 107, 3089 (1985)CrossRefGoogle Scholar
  29. 28.
    Burdett, J. K., Lee, S.: J. Am. Chem. Soc. 105, 1079 (1983)CrossRefGoogle Scholar
  30. 29.
    Burdett, J. K., Canadell, E., Hughbanks, T.: J. Am. Chem. Soc. 108, 3971 (1986)CrossRefGoogle Scholar
  31. 30.
    Widera, A., Schafer, H.: Z. Naturf. B34, 1769 (1979)Google Scholar
  32. 31.
    Bieber, A., Ducastelle, F., Gautier, F., Treglia, G., Turchi, P.: Sol. State Comm. 45, 585 (1983)CrossRefGoogle Scholar
  33. 32.
    Burdett, J. K., Lawrence, N. J., Turner, J. J.: Inorg. Chem. 23, 2419 (1984)CrossRefGoogle Scholar
  34. 33.
    Oka, T.: Phys. Rev. Lett. 45, 531 (1980)CrossRefGoogle Scholar
  35. 34.
    Upmaris, R. K., Gadd, G. E., Poliakoff, M., Simpson, M. B., Turner, J. J., Whyman, R., Simpson, A. F.: J. Chem. Soc., Chem. Comm. 27 (1985); Church, S. P., Grevels, F.-W., Herman, H., Schaffner, K.: J. Chem. Soc., Chem. Comm. 30 (1985)Google Scholar
  36. 35.
    Kubas, G. J., Ryan, R. R., Swanson, B. I., Vergami, P. J., Wasserman, H. J.: J. Am. Chem. Soc. 106, 451 (1984)CrossRefGoogle Scholar
  37. 36.
    Radom, L., Poppinger, D., Haddon, R. C., in: Carbonium Ions, Vol. V, Chapter 38, (Olah, G. A., Schleyer, P. v. R., Eds.) Wiley, 1976Google Scholar
  38. 37.
    Collins, J. B., Schleyer, P. v. R., Binkley, J. S., Pople, J. A., Radom, L.: J. Am. Chem. Soc. 98, 3436 (1976)CrossRefGoogle Scholar
  39. 38.
    Woodward, R. B., Hoffmann, R.: J. Am. Chem. Soc. 87, 395, 2046, 2511, 4389 (1985)CrossRefGoogle Scholar
  40. 39.
    Woodward, R. B., Hoffmann, R.: Accts. Chem. Res. 1, 17 (1968)CrossRefGoogle Scholar
  41. 40.
    Zimmerman, H. E.: Accts. Chem. Res. 4, 272 (1971)CrossRefGoogle Scholar
  42. 41.
    See, for example, Yates, K.: Hückel Molecular Orbital Theory, Academic Press, 1978Google Scholar
  43. 42.
    See, for example, Pettifor, D. G.: Calphad 1, 305 (1977)CrossRefGoogle Scholar
  44. 43.
    Streitweiser, A.: Molecular Orbital Theory for Organic Chemists, Wiley, 1961Google Scholar
  45. 44.
    Ault, B. S., Andrews, L.: Inorg. Chem. 16, 2024 (1977)CrossRefGoogle Scholar
  46. 45.
    Burdett, J. K., Marsden, C. J.: (submitted for publication)Google Scholar
  47. 46.
    Diercksen, G. H. F., Grüner, N. E., Oddershede, J., Sabin, J. R.: Chem. Phys. Lett. 117, 29 (1985)CrossRefGoogle Scholar
  48. 47.
    Dewar, M. J. S.: Bull. Chim. Soc. Belgae 88, 957 (1979)Google Scholar
  49. 48.
    Mingos, D. M. P.: J. Chem. Soc. (Dalton) 20, 26, 31 (1977)Google Scholar
  50. 49.
    Burdett, J. K., Lee, S., Sha, W. C.: Nouv. J. Chimie 90, 757 (1985)Google Scholar
  51. 50.
    Andersson, S., Hyde, S. T., von Schnering, H. G.: Z. Kristallog. 168, 1 (1984); Hyde, S. T., Andersson, S., Ericsson, B., Larsson, K.: Z. Kristallog. 168, 213 (1984)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Jeremy K. Burdett
    • 1
  1. 1.Department of Chemistry and James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations