Skip to main content

Mass spectrometry for on-line monitoring of biotechnological processes

  • Conference paper
  • First Online:
Biotechnology Methods

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 35))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

surface area [m2]

c:

concentration [mol L−1], [g L−1]

c:

number of measurements

C:

concentration matrix

CUR:

carbon dioxide uptake rate [mol s−1]

CTR:

carbon dioxide transfer rate [mol s−1]

d:

deviation [s m−1]

D:

diffusion coefficients [m2 s−1]

DO:

dissolved oxygen concentration [g L−1]

F:

flow rate [mol s−1]

H:

Henry coefficient [mol m−3 Pa−1]

I:

ion current [A]

I:

matrix of ion currents

K:

equilibrium constant [mol L−1]

k:

MS calibration constant [mol m3 A−1]

k1a:

volumetric mass transfer coefficient [s−1]

l:

membrane thickness [m]

M:

molecular weight [g mol−1]

n:

number of components

OD:

optical density

OUR:

oxygen uptake rate [mol s−1]

OTR:

oxygen transfer rate [mol s−1]

p:

pressure [Pa]

r:

reaction rate [mol L−1 s−1]

r:

number of masses

R:

gas constant [Pa m3 K]

R:

film resistance [s m−1]

RQ:

respiratory quotient

s:

sensitivity coefficient [A l g−1]

S:

matrix of sensitivity coefficients

t:

time [s], [h]

T:

temperature [K], [‡C]

V:

volume [m3]

x:

mole fraction

X:

biomass concentration [g m−3]

Τ:

residence time, response time [s]

b:

refers to boundary layer

g:

refers to gas phase

in:

refers to reactor inlet

l:

refers to liquid phase

m:

refers to membrane

out:

refers to reactor outlet

tot:

total

*:

refers to equilibrium value

′:

relative

DC:

direct current

FAB:

fast atom bombardment ionization

FD:

field desorption ionization

FE:

field emission ionization

FT:

Fourier transform

EI:

electron impact ionization

GC:

gas chromatography

HPLC:

high performance liquid chromatography

i.d.:

inner diameter

MS:

mass spectrometer (-metry)

m/z:

mass to charge ratio

SEM:

secondary electron multiplier

SIM:

selected ion monitoring

References

  1. Alberti, J. C., Phillips, J. A., Fink, D. J.: Off-line monitoring of fermentation samples by FTIR/ATR: a feasibility study for real-time process control. 7th Symp. on “Biotechnology of Fuels and Chemicals, Gatlinburg”, Tennessee, May 14–17, 1985

    Google Scholar 

  2. Anhalt, J. P., Fenselau, C.: Anal. Chem. 47, 21 (1975)

    Google Scholar 

  3. Batey, J. H.: Int. J. Mass Spectrom. Ion Phys. 60, 117 (1984)

    Google Scholar 

  4. Berovic, M., Cimerman, A.: Eur. J. Appl. Microbiol. Biotechnol. 16, 165 (1982)

    Google Scholar 

  5. Beyeler, W., Einsele, A., Fiechter, A.: ibid. 13, 10 (1981)

    Google Scholar 

  6. Boelcke, C., Lenz, R., Peckmann, U., Reuss, M.: Reaktorgekoppelte Filtrationsanlage mit automatischem Probeneinla\ zur Aufbereitung und Analyse von Proben aus Fermentations-prozessen (Bio-Filtrator). Technical Report TU Berlin 1985

    Google Scholar 

  7. Bohátka, S.: Quadrupole mass spectrometric measurement of dissolved and free gases. In: “Gas Enzymology” (Degn, H., et al., eds.), p. 1–16, Reidel Publ. Company 1985

    Google Scholar 

  8. Bohátka, S., Kálmán, P., Langer, G., Szilágyi, J.: Quadrupole mass spectrometer analyser for monitoring fermentation processes. In: “Advances in Fermentation”, p. 131, Wheatland Journals Ltd 1983

    Google Scholar 

  9. Bohátka, S. Langer, G., Szilágyi, J., Berecz, I.: Int. J. Mass Spectrom. Ion Phys. 48, 277 (1983)

    Google Scholar 

  10. Boon, J. J., Tom, A., Brandt, B., Eijkel, G. B., Kistemaker, P. G., Notten F. J. W., Mikx, F. H. M.: Anal. Chim. Acta 163, 193 (1984)

    Google Scholar 

  11. Brantigan, J. W., Gott, V. L., Vestal, M. L., Fergusson, G. J., Johnson, W. H.: J. Appl. Physiol. 28, 375 (1970)

    Google Scholar 

  12. Breth, A., Dobrozemsky, R., Kraus, B.: Vacuum 33, 73 (1983)

    Google Scholar 

  13. Brockman, T. J., Anderson, L. B.: Anal Chem. 56, 207 (1984)

    Google Scholar 

  14. Brunnee, C., Voshage, H.: „Massenspektrometrie“. K. Thieme, Muenchen 1968

    Google Scholar 

  15. Buckland, B., Brix, T., Fastert, H., Gbewonyo, K., Hunt, G., Deepak, J.: Bio/technology 3, 982 (1985)

    Google Scholar 

  16. Buckland, B., Fastert, H.: Analysis of fermentation exhaust gas using a mass-spectrometer. In: “Computer applications in Fermentation Technology”, p. 119, Soc. of Chemical Industry, London 1982

    Google Scholar 

  17. Calvo, K. C., Weisenberger, C. R., Anderson, L. B., Klapper, M. H.: Anal. Chem. 53, 981 (1981)

    Google Scholar 

  18. Calvo, K. C., Weisenberger, C. R., Anderson, L. B., Klapper, M. H.: J. Am. Chem. Soc. 105, 6935 (1983)

    Google Scholar 

  19. Cameresi, G. G., Costa, B.: Adv. Mass Spectrom. 7B, 1062 (1978)

    Google Scholar 

  20. Chapman, J. R.: Computers in mass spectrometry. Academic Press, London 1978

    Google Scholar 

  21. Cleland, N., Enfors, S. O.: Anal. Chim. Acta 163, 281 (1984)

    Google Scholar 

  22. Cleland, N., Hörnstein, E. G., Elwing, H., Enfors, S. O., Lundström, I: Appl. Microbiol. Biotechnol. 20, 268 (1984)

    Google Scholar 

  23. Comberbach, D. M., Bu'lock, J. D.: Biotechnol. Bioeng. 25, 2503 (1983)

    Google Scholar 

  24. Cox, R. P., Jensen, B. B., Joergensen, L., Degn, H.: Microbiological Sciences 1, 200 (1984)

    Google Scholar 

  25. Crawford, R. W., Bedford, R. G., Wong, C. M., Brand, H. R., Kishiyama, K. I.: Rev. Scient. Instrum. 20, 333 (1981)

    Google Scholar 

  26. Crawford, R. W., Bedford, R. G., Wong, C. M., Brand, H. R., Kishiyama, K. I.: Dyn. Mass Spectrometry 6, 195 (1981)

    Google Scholar 

  27. Dairaku, K., Yamané, T.: Biotechnol. Bioeng. 21, 1671 (1979)

    Google Scholar 

  28. Danielsson, B., Mandenius, C. F., Winquist, F., Mattiasson, B., Mosbach, K.: Fermenter monitoring and control by enzyme thermistor. In: Advances in Biotechnology 1, p. 445 (Moo-Young, M., Robinson, C. W., Vezina, C., eds.), Pergamon Press, Toronto 1981

    Google Scholar 

  29. Dekkers, R. M.: State estimation of a fed-batch baker's yeast fermentation. In: “Modelling and Control of Biotechnical Processes”, (Halme, A., ed.), Pergamon Press, Oxford 1983

    Google Scholar 

  30. Dekkers, R. M., Voetter, M. H.: Adaptive control of a fed-batch baker's yeast fermentation. In: “Modelling and Control of Biotechnological Processes”, p. 73 (Johnson, A., ed.), Pergamon Press, Oxford 1985

    Google Scholar 

  31. Degn, H., Cox, R. P., Lloyd, D.: Methods Biochem. Anal. 31, 165 (1985)

    Google Scholar 

  32. Doerner, P., Lehmann, J. Piehl, H., Megnet, R.: Biotechnol. Letters 4, 557 (1982)

    Google Scholar 

  33. Endo, I., Nagamune, T., Nakamura, T., Inoue, I.: A successive fed-batch culture of a brewer's yeast in three substrates system. In: “Third European Congress of Biotechnology” Vol. 2, p. 437 (DECHEMA ed.), Verlag Chemie, Weinheim 1984

    Google Scholar 

  34. Enfors, S. O., Cleland, N.: Calibration of oxygen-and pH-based enzyme electrodes for fermentation control. In: “Chemical Sensors”, p. 672 (Seiyama, T., ed.), Elsevier, Amsterdam 1983

    Google Scholar 

  35. Eustache, H., Histi, G.: J. Membrane Sci. 8, 105 (1981)

    Google Scholar 

  36. Finnigan MAT.: Modell ITD 700, 1985

    Google Scholar 

  37. Fite, W. L., Patterson, T. A., Siegel, M. W., Brackmann, R. T.: Dyn. Mass Spectrometry 6, 167 (1981)

    Google Scholar 

  38. Furukawa, K., Heinzle, E., Dunn, I. J.: Biotechnol. Bioeng. 25, 2293 (1983)

    Google Scholar 

  39. Goetz, P.: Kopplung von Massenspektrometer und Bioreaktor: Entwicklung und Erprobung der Thermospray-Einla\technik. Diplomarbeit, TU Berlin 1985

    Google Scholar 

  40. Graves, D. J., Baumgardner, J. E., Neufeld, G. R., Quinn, J. A.: AIChE Symp. Ser. 79, 124 (1983)

    Google Scholar 

  41. Griot, M., Heinzle, E., Dunn, I. J.: Fast determination of volatiles in fermentation broth using capillary GC and mass spectrometry, to be published

    Google Scholar 

  42. Grosz, R., Stephanopoulos, G., San, K. Y.: Biotechnol. Bioeng. 26, 1198 (1984)

    Google Scholar 

  43. Heinzle, E., Bolzern, O., Dunn, I. J., Bourne, J. R.: A porous membrane-carrier gas measurement system for dissolved gases and volatiles in fermentation systems. In: “Advances in Biotechnology” 1, p. 439 (Moo-Young, M., Robinson, C. W., Vezina, C., eds.), Pergamon Press, Toronto 1981

    Google Scholar 

  44. Heinzle, E., Dettwyler, B.: Einsatz von Elementbilanzen zur on-line Analyse von Fermentationen. Produktion von Poly-Β-HydroxybuttersÄure. 4. DECHEMA Jahrestagung der Biotechnologen, 3/4 Juni, Frankfurt/Main 1986

    Google Scholar 

  45. Heinzle, E., Furukawa, K., Dunn, I. J., Bourne, J. R.: Bio/technology 1, 181 (1983)

    Google Scholar 

  46. Heinzle, E., Furukawa, K., Tanner, R., Dunn, I. J.: Modelling of sustained oscillations observed in continuous culture of Saccharomyces cerevisiae. In: “Modelling and Control of Biotechnical Processes”, p. 57 (Halme, A., ed.), Pergamon Press, Oxford 1983

    Google Scholar 

  47. Heinzle, E., Kramer, H., Dunn, I. J.: Biotechnol. Bioeng. 27, 238 (1985)

    Google Scholar 

  48. Heinzle, E., Lafferty, R. M.: Europ. J. Appl. Microbiol. Biotechnol. 11, 17 (1980)

    Google Scholar 

  49. Heinzle, E., Lunden, M., Dunn, I. J.: Analysis of biomass and metabolites using pyrolysis mass spectrometry. In: “Modelling and Control of Biotechnological Processes”, p. 61 (Johnson, A., ed.), Pergamon Press, Oxford 1985

    Google Scholar 

  50. Heinzle, E., Moes, J., Griot, M., Kramer, H., Dunn, I. J., Bourne, J. R.: Anal. Chim. Acta 163, 219 (1984)

    Google Scholar 

  51. Heinzle, E., Moes, J., Griot, M., Sandmeier, E., Dunn, I. J., Bucher, R.: Ann. N. Y. Acad. Sci. 469, 178 (1986)

    Google Scholar 

  52. Hitchman, M. L.: Measurement of dissolved oxygen, Wiley, New York 1978

    Google Scholar 

  53. Hoch, G., Kok, B.: Arch. Biochem. Biophys. 101, 160 (1963)

    Google Scholar 

  54. Hunter, J. A., Stacy, R. W., Hitchcock, F. A.: Rev. Sci. Instrum. 20, 333 (1949)

    Google Scholar 

  55. Hwang, S. T., Kammermeyer K.: Membranes in Separation, J. Wiley & Sons (Wiley Interscience), New York 1975

    Google Scholar 

  56. Jensen, B. B., Cox, R. P.: Spec. Publ. Soc. Gen. Microbiol. 14, 279 (1985)

    Google Scholar 

  57. Joergensen, L.: The reaction mechanism of methane monooxygenase studied by membraneinlet mass spectrometry in whole cells of methanotrophic bacteria. In: “Gas Enzymology”, p. 187 (Degn, H., et al. eds.), Reidel, Dordrecht 1985

    Google Scholar 

  58. Johnson, T. D., Watkins, G. M., Holsinger, J., Roberts, M. P., Thomas, D. D.: Recent Dev. Mass Spectrom. Biochem. Med. 5, 463 (1979)

    Google Scholar 

  59. Joshi, J. B., Pandit, A. B., Sharma, M. M.: Chem. Eng. Sci. 37, 813 (1982)

    Google Scholar 

  60. Jouanneau, Y., Kelly, B. C., Berlier, Y., Lespinat, P. A.: J. Bacteriol. 143, 628 (1980)

    Google Scholar 

  61. Kienitz, H.: Massenspektrometrie, Verlag Chemie, Weinheim/Bergstrasse 1968

    Google Scholar 

  62. Kjaergaard, L.: Adv. Biochem. Eng. 7, 131 (1977)

    Google Scholar 

  63. Kroner, K. H., Kula, R. M.: Anal. Chim. Acta 163, 3 (1984)

    Google Scholar 

  64. Langer, G., Berecz, I., Bohátka, S.: Acta Phys. Acad. Sci. Hung. 49, 307 (1980)

    Google Scholar 

  65. Langer, G., Bohátka, S., Berecz, I., Schlenk, B. Boernemisza-Pauspertl, P., Kiss, K., Buzás, I., Pártay, G., Mázsik, L., Sági, F.: Vacuum 34, 757 (1984)

    Google Scholar 

  66. Lenz, R., Boelcke, C., Peckmann, U., Reuss, M.: A new automatic sampling device for the determination of filtration characteristics and the coupling of an HPLC to fermenters. In: “Modelling and Control of Biotechnological Processes”, p. 55 (Johnson, A., ed.) Pergamon Press, Oxford 1985

    Google Scholar 

  67. Linnarson, A.: Adv. Mass Spectrom. 8B, 1559 (1980)

    Google Scholar 

  68. Lloyd, D., Bohátka, S., Szilágyi, J.: Biosensors 1, 179 (1985)

    Google Scholar 

  69. Lloyd, D., James, K., Williams, J., Williams, N.: Anal. Biochem. 116, 17 (1981)

    Google Scholar 

  70. Lloyd, D., Scott, R. I.: J. Microbiol. Methods 1, 313 (1983)

    Google Scholar 

  71. Lundsgaard, J. S., Peterson, L. C., Degn, H.: Mass spectrometric determination of oxygen kinetics in biochemical systems. In: “Measurement of Oxygen”, p. 163 (Degn, H., Brook, R., eds.), Elsevier, Amsterdam 1976

    Google Scholar 

  72. Malinowski, E. R.: Anal. Chem. 49, 612 (1977)

    Google Scholar 

  73. Malinowski, E. R., Howery, D. G.: Factor analysis in chemistry, J. Wiley & Sons, New York 1980

    Google Scholar 

  74. Mandenius, C. F., Danielsson, B., Mattiasson, B.: Anal. Chim. Acta 163, 135 (1984)

    Google Scholar 

  75. Matz, G.: Ein mobiles Massenspektrometer zur Erfassung umweltbelastender Schadstoffe. Hochschule der Bundeswehr, Hamburg, Ph. D. Thesis 1981

    Google Scholar 

  76. Meuzelaar, L. C., Haverkamp, J. Hileman, F. D.: Pyrolysis mass spectrometry of recent and fossil biomaterials, Elsevier, Amsterdam 1982

    Google Scholar 

  77. Millard, B. J.: Quantitative mass spectrometry. Heyden, London 1978

    Google Scholar 

  78. Moo, D. G., Cooney, C. L.: Biotechnol. Bioeng. 25, 225 (1983)

    Google Scholar 

  79. Multala, R., Aittamaa, J., Salminen, K. K., Halmu, A., JÄrvelÄinen, M.: Computers & Chem. Eng. 3, 47 (1979)

    Google Scholar 

  80. Mütze, B.: Biotechnol. Bioeng. 26, 390 (1984)

    Google Scholar 

  81. Muysers, K., Smidt, U.: Clinical uses of mass spectrometry. In: “Biochemical applications of mass spectrometry”, p. 601, (Waller, G. R., ed.), Wiley Interscience, New York 1972

    Google Scholar 

  82. Nestaas, E., Wang, D. I. C.: Biotechnol. Bioeng. 25, 1981 (1983)

    Google Scholar 

  83. Norris, P. E., Scrivens, J. H.: Dyn. Mass Spectrometry 6, 155 (1981)

    Google Scholar 

  84. Ottley, T. W.: ibid. 6, 212 (1981)

    Google Scholar 

  85. Pinnick, W. J., Lavine, B. K., Weisenberger, C. R.: Anal. Chem. 52, 1102 (1980)

    Google Scholar 

  86. Poll, A., Potter, C. J., Tily, P. J.: Chem. Eng. London N244, CE413 (1970)

    Google Scholar 

  87. Ponte, J., Purves, M. J.: Recent Dev. Mass Spectrom. Biochem. Med. 6, 483 (1979)

    Google Scholar 

  88. Puhar, E., Einsele, A., Bühler, H., Ingold, W.: Biotechnol. Bioeng. 22, 2411 (1980)

    Google Scholar 

  89. Pungor, E., Perley, C. R., Cooney, C. L., Weaver, J. C.: Biotechnol. Letters 2, 409 (1981)

    Google Scholar 

  90. Pungor, E., Klibanov, A. M., Cooney, C. L., Weaver, J. C.: Biomed. Mass Spec. 9, 181 (1982)

    Google Scholar 

  91. Pungor, E., Pecs, M., Szigeti, L., Nyeste, L., Szilagyi, J.: Anal. Chim. Acta 163, 185 (1984)

    Google Scholar 

  92. Pungor, E., Schaefer, E., Weaver, J. C., Cooney, C. L.: Direct monitoring of a fermentation in a computer mass spectrometer fermentor system. In: Advances in Biotechnology 1: p. 393 (Moo-Young, M., Robinson, C. W., Vezina, C., eds.), Pergamon Press, Toronto 1981

    Google Scholar 

  93. Radmer, R., Ollinger, O.: Methods in Enzymology 69, 547 (1980)

    Google Scholar 

  94. Ramsey, G., Turner, A. P. F., Franklin, A., Higgins, I. J.: Rapid bioelectrochemical methods for the detection of living microorganisms. In: “Modelling and Control of Biotechnological Processess”, p. 65 (Johnson, A., ed.), Pergamon Press, Oxford 1985

    Google Scholar 

  95. Rautenbach, R., Albrecht, R.: Chem. Ing.-Tech. 54, 229 (1982)

    Google Scholar 

  96. Reuss, M., Piehl, H., Wagner, F.: Europ. J. Appl. Microbiol. Biotechnol. 1, 323 (1975)

    Google Scholar 

  97. Roels, J. A.: Energetics and Kinetics in Biotechnology, Elsevier Biomedical, Amsterdam 1983

    Google Scholar 

  98. Rummel, K.: Applied Factor Analysis, North Western University Press, Evanston 1970

    Google Scholar 

  99. Ryhage, R.: Anal. Chem. 36, 759 (1964)

    Google Scholar 

  100. San, K. Y., Stephanopoulos, G.: Biotechnol. Bioeng. 26, 1189 (1984)

    Google Scholar 

  101. San, K. Y., Stephanopoulos, G.: ibid. 26, 1209 (1984)

    Google Scholar 

  102. Schlichting, H.: Boundary-layer theory. Mc Graw-Hill, New York 1968

    Google Scholar 

  103. Schmidt, W. J., Meyer, H. D., Schügerl, K., Kuhlmann, W., Bellgardt, K. H.: Anal. Chim. Acta 163, 101 (1984)

    Google Scholar 

  104. Schneider, K., Frischknecht, K.: J. Appl. Chem. Biotechnol. 17, 631 (1977)

    Google Scholar 

  105. Schorr, W. K., Duschner, H., Starke, K.: Anal. Chem. 54, 671 (1982)

    Google Scholar 

  106. Schuy, K. D.: Z. Instr. 75, 190 (1967)

    Google Scholar 

  107. Scott, R. I., Williams, T. N., Whitmore, T. N., Lloyd, D.: Eur. J. Appl. Microbiol. Biotechnol. 18, 236 (1983)

    Google Scholar 

  108. Scrivens, J. H.: Vacuum 32, 169 (1982)

    Google Scholar 

  109. Scrivens, J. H., Ramage, J. C.: Int. J. Mass Spectrom. Ion Phys. 60, 299 (1984)

    Google Scholar 

  110. Silverman, D. N.: Adv. Mass Spectrom. Biochem. Med. 1, 329 (1976)

    Google Scholar 

  111. Smith, A., Pettifor, M. J.: Vacuum 32, 175 (1982)

    Google Scholar 

  112. Spruytenburg, R., Dunn, I. J., Bourne, J. R.: Biotechnol. Bioeng. Symp. 9, 359 (1979)

    Google Scholar 

  113. Srienc, F., Arnold, B., Bailey, J. E.: Biotechnol. Bioeng. 26, 982 (1984)

    Google Scholar 

  114. Stephanopoulos, G, San, K. Y.: ibid. 26, 1176 (1984)

    Google Scholar 

  115. Szilágyi, J., Bohátka, S., Langer, G., Sántha, G., Seres, P.: Industrial application of mass spectrometry to monitoring fermentation. In: “Third European Congress on Biotechnology”, Vol. 3, p. 609 (DECHEMA ed.), Verlag Chemie, Weinheim 1984

    Google Scholar 

  116. Tailliez, B. Y., Hume, S. H.: Dyn. Mass Spectrometry 6, 181 (1981)

    Google Scholar 

  117. Tal'roze, V. L., Gorodetsky, I. G., Zolotny N. B., Karpov, G. V., Skurat, V. E., Maslennikovy, V. Ya.: Adv. Mass Spectrom. 7B, 858 (1978)

    Google Scholar 

  118. Tonge, G. M.: Instrumentation and control in fermentation: The application of computer controlled mass spectrometry. 5th Intern. Ferm. Symp., London, Canada (abstr.) 1980

    Google Scholar 

  119. Valentini, L., Razzano, G.: The real-time analysis of broth constituents in the control strategy of the fermentation processes: on/off-line fulfilments. In. “Modelling and control of biotechnological processes”, p. 253 (Halme, A., ed.), Pergamon Press, Oxford 1983

    Google Scholar 

  120. Van Graas, G., de Leeuw, J. W., Schenck, P. A.: Adv. Organ. Geochem. 12, 485 (1979)

    Google Scholar 

  121. Verduyn, C., Van Dijken, J. P., Scheffers, W. A.: Biotech. Bioeng. 25, 1049 (1983)

    Google Scholar 

  122. Vestal, M. L.: Int. J. Mass Spectrom. Ion Phys. 46, 193 (1983)

    Google Scholar 

  123. Voogd, J., Huitin, E., Van Rossum, G. J., Petri, J. M.: ibid. 48, 7 (1983)

    Google Scholar 

  124. Vorlop, K. D., Becke, J. W., Stock, J., Klein, J.: Anal. Chim. Acta 163, 287 (1984)

    Google Scholar 

  125. Voyksner, R. D.: Anal. Chem. 57, 2600 (1985)

    Google Scholar 

  126. Waller G. R.: Biotechnical applications of Mass spectrometry, Wiley Interscience, New York 1972

    Google Scholar 

  127. Wang, H. E., Cooney, C. L., Wang, D. I. C.: Biotechnol. Bioeng. 21, 975 (1979)

    Google Scholar 

  128. Watson, J. T., Biemann, K.: Anal. Chem. 36, 1135 (1964)

    Google Scholar 

  129. Weaver, J. C.: Possible biomedical applications of the volatile enzyme product method. In: “Biomedical Applications of Immobilized Enzymes and Proteins” 2, p. 207 (Chang, T. M. S., ed.), Plenum Press, New York 1977

    Google Scholar 

  130. Weaver, J. C.: Continuous monitoring of volatile metabolites by a mass spectrometer. In: “Noninvasive Probes of Tissue Metabolism”, p. 25 (Cohen, J. S., ed.), Wiley, New York 1982

    Google Scholar 

  131. Weaver, J. C., Abrams, J. H.: Rev. Sci. Instrum. 50, 478 (1979)

    Google Scholar 

  132. Weaver, J. C., Mason, M. K., Jarrell, J. A., Peterson, J. W.: Biochem. Biophys. Acta 438, 296 (1976)

    Google Scholar 

  133. Weaver, J. C., Perley, C. R. Reames, F. M., Cooney, C. L.: Biotechnol. Letters 2, 133 (1980)

    Google Scholar 

  134. Westover, L. B., Tou, J. C., Mark, J. H.: Anal. Chem. 46, 568 (1974)

    Google Scholar 

  135. Windig, W., de Hoog, G. S., Haverkamp, J.: J. Anal Appl. Pyrolysis 3, 213 (1982)

    Google Scholar 

  136. Windig, W., Kistemaker, P. G., Haverkamp, J.: ibid. 3, 199 (1982)

    Google Scholar 

  137. Woldring, S., Owens, G., Woolford, D.: Science 153, 885 (1966)

    Google Scholar 

  138. Wyatt, J. R.: Int. J. Mass Spectrom. Ion Proc. 60, 289 (1984)

    Google Scholar 

  139. Yamané, T., Matsuda, M., Sada, E.: Biotechnol. Bioeng. 23, 2493 (1981)

    Google Scholar 

  140. Yamané, T., Matsuda, M., Sada, E.: ibid. 23, 2509 (1981)

    Google Scholar 

  141. Yano, T., Kobajashi, T., Shimizu, S.: J. Ferment Technol. 56, 421 (1978)

    Google Scholar 

  142. Zabriskie, D. W., Humphrey, A.: Appl. Environm. Microbiol. 35, 337 (1978)

    Google Scholar 

  143. Villinger, H., Federer, W.: Analysentechnik OHG, Innsbruck, Austria 1986

    Google Scholar 

  144. Scott, R. I., Yarlett, N., Hillman, K., Williams, T. N., Williams, A. G., Lloyd, D.: J. Appl. Bacteriol. 55, 143 (1983)

    Google Scholar 

  145. Scott, R. I., Williams, T. N., Lloyd, D.: Biotechnol. Letters 5, 375 (1983)

    Google Scholar 

  146. Lloyd, D., Kristensen, B., Degn, H.: J. Gen. Microbiol. 129, 2125 (1983)

    Google Scholar 

  147. Lloyd, D., Scott, R. I., Williams, T. N.: Trends in Biotechnol. 1, 60 (1983)

    Google Scholar 

  148. Yarlett, N., Scott, R. I., Williams, A. G., Lloyd, D.: J. Appl. Bacteriol. 55, 359 (1983)

    Google Scholar 

  149. Hillman, K., Lloyd, D., Scott, R. I., Williams, A. G.: The effect of O2 on H2 production by rumen holotrich protozoa as determined by membrane inlet mass spectrometry. In: “Gas Metabolism”, p. 271, (Poole, R. K., Dow, C. S., eds.), Academic Press, New York 1985

    Google Scholar 

  150. Scott, R. I., Williams, T. N., Whitmore, T. N., Lloyd, D.: Mass spectrometric determinations of the effect of O2 on methanogenesis: inhibition or stimulation? In: “Gas Metabolism”, p. 263, (Poole, R. K., Dow, C. S., eds.), Academic Press, New York 1985

    Google Scholar 

  151. Hillman, K., Lloyd, D., Williams, A. G.: Continuous monitoring of fermentation gases in an artifical rumen system (RUSITEC) using a membrane-inlet probe on a portable quadrupole mass spectrometer. In: “Gas Enzymology”, p. 201, (Degn, H., Cox, R. P., Toftlund, H., eds.), Reidel, Dordrecht 1985

    Google Scholar 

  152. Whitmore, T. N., Lloyd, D.: Biotechnol. Letters 8, 203 (1986)

    Google Scholar 

  153. Hillman, D., Lloyd, D., Williams, A. G.: Current Microbiol. 12, 335 (1985)

    Google Scholar 

  154. Whitmore, T. N., Lazzari, M., Lloyd, D.: Biotechnol. Letters 7, 283 (1985)

    Google Scholar 

  155. Rannalli, G., Whitmore, T. N., Lloyd, D.: FEMS Microbiol. Letters 35, 119, (1986)

    Google Scholar 

  156. Lloyd, D., Scott, R. I.: Mass spectrometric monitoring of dissolved gases. In: “Gas Metabolism”, p. 239 (Poole, R. D., Dow, C. S., eds.), Academic Press, New York 1985

    Google Scholar 

  157. Reuss, I., Fröhlich, S., Kramer, B., Messerschmidt, K., Niebelschütz, H.: Mathematical modelling of microbial kinetics and oxygen transfer for gluconic acid production with Aspergillus niger. In: “Third European Congress of Biotechnology” Vol. 2, p. 455 (DECHEMA ed.), Verlag Chemie, Weinheim 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Heinzle, E. (1987). Mass spectrometry for on-line monitoring of biotechnological processes. In: Biotechnology Methods. Advances in Biochemical Engineering/Biotechnology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0004425

Download citation

  • DOI: https://doi.org/10.1007/BFb0004425

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17627-5

  • Online ISBN: 978-3-540-47727-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics