Thermodynamics of cation-macrocyclic compound interaction

  • R. M. Izatt
  • D. J. Eatough
  • J. J. Christensen
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 16)


Recently reported synthetic macrocyclic molecules with hydrophilic cavities containing multiple binding atoms and with hydrophobic exteriors make possible controlled studies of selective cation complexation. Certain of these cation-ligand systems appear to mimic biological systems which have remarkable element specificities. Such cation-ligand systems may be considered as models for the study of this unusual property of living systems.

Macrocyclic compounds would be expected to have numerous practical uses for the scientist and engineer. The ability of these compounds to selectively complex cations suggests applications wherever ion separation or detection is desired. The solubility of the cation complex in organic solvents makes these compounds useful as devices for the introduction of salts into an organic solvent. Other present or projected uses include indicating components of ion selctive electrodes, drugs for introduction of elements into animals, and drugs for selectively removing undesired elements from animals.


Donor Atom Thermodynamic Quantity Monovalent Cation Ring Size Bivalent Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pedersen, C. J.: J. Am. Chem. Soc. 89, 7017 (1967).Google Scholar
  2. 2.
    Simon, W., Morf, W. E.: In: Membranes — A series of advances, Vol. 2 (ed. by Eisenman, G.). New York: Marcel Dekker 1972.Google Scholar
  3. 3.
    Frensdorff, H. K.: J. Am. Chem. Soc. 93, 600 (1971).Google Scholar
  4. 4.
    Haymore, B. L.: M. S. Thesis, Brigham Young University, Provo, Utah (1972).Google Scholar
  5. 5.
    Moore, C., Pressman, B. C.: Biochem. Biophys. Res. Commun. 15, 562 (1964).Google Scholar
  6. 6.
    Shemyakin, M. M., Ovchinnikov, Yu. A., Ivanov, V. T., Antonov, V. K., Vinogradova, E. I., Shkrob, A. M., Malenkov, G. G., Evstratov, A. V., Laing, I. A., Melnik, E. I., Ryabova, I. D.: J. Membrane Biol. 1, 402 (1969).Google Scholar
  7. 7.
    Dobler, M.: Helv. Chim. Acta 55, 1371 (1972).-Duax, W. L., Hauptman, H., Weeks, C. M., and Norton, D. A., Science, 176, 911 (1972).Google Scholar
  8. 8.
    Bush, M. A., Truter, M. R.: J. Chem. Soc, Perkin II. 1972, 345.Google Scholar
  9. 9.
    Dalley, N. K., Smith, D. E., Izatt, R. M., Christensen, J. J.: Chem. Commun. 90 (1972).Google Scholar
  10. 10.
    Lipscomb, W. N.: Chem. Soc. Rev. 1, 319 (1972).Google Scholar
  11. 11.
    Evans, G. W., Roginski, E. E., Mertz, W.: Biochem. Biophys. Res. Commun. 50, 718 (1973).Google Scholar
  12. 12.
    Pedersen, C. J., Frensdorff, H. K.: Angew. Chem., Intern. Ed. Engl. 11, 16 (1972).Google Scholar
  13. 13.
    Chock, P. B.: Proc. Natl. Acad. Sci. U.S. 69, 1939 (1972).Google Scholar
  14. 14.
    Izatt, R. M., Nelson, D. P., Rytting, J. H., Haymore, B. L., Christensen, J. J.: J. Am. Chem. Soc. 93, 1619 (1971).-Christensen, J. J., Hill, J. O., Izatt, R. M.: Science 174, 459 (1971).Google Scholar
  15. 15.
    Früh, P. U., Clerc, J. J., Simon, W.: Helv. Chim. Acta 54, 1445 (1971).Google Scholar
  16. 16.
    Lutz, W. K., Früh, P. U., Simon, W.: Helv. Chim. Acta 54, 2767 (1971).Google Scholar
  17. 17.
    Eyal, E., Rechnitz, G. A.: Anal. Chem. 43, 1090 (1971).Google Scholar
  18. 18.
    Takaki, U., Hogen Esch, T. E., Smid, J.: J. Am. Chem. Soc. 93, 6760 (1971).Google Scholar
  19. 19.
    Shchori, E., Jagur-Grodzinski, J., Luz, Z., Shporer, M.: J. Am. Chem. Soc. 93, 7133 (1971).Google Scholar
  20. 20.
    Evans, D. F., Wellington, S. L., Nadis, J. A., Cussler, E. L.: J. Solution Chem., in press 1, 499 (1972).Google Scholar
  21. 21.
    McLaughlin, S. G. A., Szabo, G., Eisenman, G., Ciani, S.: Abstracts, 14th Annual Meeting of the Biophysical Society, Baltimore, Md., February 25–27, 1970, p. 96a.Google Scholar
  22. 22.
    Christensen, J. J., Ruckman, J., Eatough, D. J., Izatt, R. M.: Thermochim. Acta 3, 203 (1972).Google Scholar
  23. 23.
    Eatough, D. J., Christensen, J. J., Izatt, R. M.: Thermochim. Acta 3, 219 (1972).Google Scholar
  24. 24.
    —, Izatt, R. M., Christensen, J. J.: Thermochim. Acta 3, 233 (1972).Google Scholar
  25. 25.
    Christensen, J. J., Izatt, R. M.: In: Physical methods in advanced inorganic chemistry (eds. Hill, H. A. O., and Day, P.). New York: Wiley 1968.Google Scholar
  26. 26.
    Arnett, E. M., Moriarity, T. C.: J. Am. Chem. Soc. 93, 4908 (1971).Google Scholar
  27. 27.
    Lehn, J. M., Sauvage, J. P.: Thermodynamic Properties of Cryptates, paper presented at the Conference de Thermodynamique Chimique, Societe Chimique de France, Bordeaux, France, October 20–21, 1972.Google Scholar
  28. 28.
    Rialdi, G., Levy, J., Biltonen, R.: Biochemistry 11, 2472 (1972).-Levy, J., Biltonen, R.: Biochemistry 11, 4145 (1972).Google Scholar
  29. 29.
    Pauling, L.: The nature of the chemical bond, pp. 514, 518. Ithaca, N. Y.: Cornell University Press, 1960.Google Scholar
  30. 30.
    Robinson, R. A., Stokes, R. H.: Electrolyte solutions, 2nd edit., p. 125. New York: Academic Press 1959.Google Scholar
  31. 31.
    Kopolow, S., Hogen Esch, T. E., Smid, J.: Macromolecules 4, 359 (1971).Google Scholar
  32. 32.
    —, Machacek, Z., Wong, K. H., Hogen Esch, T. E., Smid, J.: Polymer Preprints 13, 259 (1972).Google Scholar
  33. 33.
    Izatt, R. M., Haymore, B. L., Hansen, L. D., Eatough, D. J., Bell, M. A., Christensen, J. J.: unpublished results.Google Scholar
  34. 34.
    Lehn, J. M., Sauvage, J. P.: Chem. Commun. 1971, 440.Google Scholar
  35. 35.
    Cabbiness, D. K., Margerum, D. W.: J. Am. Chem. Soc. 91, 6540 (1969).Google Scholar
  36. 36.
    Chan, L. L., Wong, K. H., Smid, J.: J. Am. Chem. Soc. 92, 1955 (1970).Google Scholar
  37. 37.
    Patel, D. J.: Biochemistry 12, 496 (1973).Google Scholar
  38. 38.
    Mayers, D. F., Urry, D. W.: J. Amer. Chem. Soc, 94, 77 (1972).-Urry, D. W.: Research/Development, March 1973, p. 30.Google Scholar
  39. 39.
    Timmermans, J.: Physico-chemical constants of pure organic compounds, Vol. 2. New York: Elsevier 1965.Google Scholar
  40. 40.
    Conway, B. E.: Electrochemical data. Westport, Conn.: Greenwood Press Pub. 1969.Google Scholar
  41. 41.
    Izatt, R. M., Nelson, D. P., Christensen, J. J.: Thermochim. Acta, to be submitted for publication.Google Scholar
  42. 42.
    Wong, K. H., Konizer, G., Smid, J.: J. Am. Chem. Soc. 92, 666 (1970).Google Scholar
  43. 43.
    Eisenman, G., Ciani, S. M., Szabo, G.: Federation Proc. Federation Am. Soc. Exp. Biol. 27, 1289 (1968).Google Scholar
  44. 44.
    Rechnitz, G. A., Eyal, E.: Anal. Chem. 44, 370 (1972).Google Scholar
  45. 45.
    Simon, W., Wuhrmann, H. R., Vašák, M., Pioda, L. A. R., Dohner, R., štefanac, Z.: Angew. Chem., Intern. Ed. Engl. 9, 445 (1970).Google Scholar
  46. 46.
    Amman, D., Pretsch, E., Simon, W.: Tetrahedron Letters 1972, 2473.Google Scholar
  47. 47.
    Morf, W. E., Simon, W.: Helv. Chim. Acta, 54, 2683 (1971).Google Scholar
  48. 48.
    Reusch, C. F., Cussler, E. L.: A. I. Ch. E. J., in press.Google Scholar
  49. 49.
    Müller, W. H.: Naturwissenschaften 57, 248 (1970).Google Scholar
  50. 50.
    Dietrich, B., Lehn, J. M., Sauvage, J. P.: Tetrahedron Letters 34, 2885 (1969).Google Scholar
  51. 51.
    ———: Tetrahedron Letters 34, 2889 (1969).Google Scholar
  52. 52.
    Finch, C. A., Monsen, E. R.: J. Am. Med. Assoc. 219, 1462 (1972).Google Scholar
  53. 53.
    Sam, D. J., Simmons, H. E.: J. Am. Chem. Soc. 94, 4024 (1972).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. M. Izatt
    • 1
  • D. J. Eatough
    • 1
  • J. J. Christensen
    • 1
  1. 1.Departments of Chemistry and Chemical Engineering and Contribution No. 39 from the Center for Thermochemical StudiesBrigham Young UniversityProvoUSA

Personalised recommendations