Cutwidth of the mesh of d-ary trees

  • Imrich Vrt'o
Workshop 02: Routing and communication in networks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1300)


In this paper we show that the cutwidth of the mesh of d-ary trees MT(d, n) is of order θ(dn+1), which improves both upper and lower bounds of Barth [2], by a factor of d.


bisection congestion cutwidth embedding mesh of trees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, D., Réseaux d'interconnexion: structures et communications, PhD. Thesis, LABRI, Université Bordeaux I, 1994.Google Scholar
  2. 2.
    Barth, D., Bandwidth and cutwidth of the mesh of d-ary trees, in: Proc. 2nd Intl. Euro-Par Conference, Lecture Notes in Computer Science 1123, Springer Verlag, Berlin, 1996, 243–246.Google Scholar
  3. 3.
    Eshagian, M.M., Prasanna, V.K., Parallel geometric algorithms for digital pictures on mesh of trees, in: Proc. 27th Annual IEEE Symposium on Foundation of Computer Science, IEEE Computer Society Press, Los Alamitos, 1986, 270–273.Google Scholar
  4. 4.
    Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes, Morgan Kaufmann Publishers, San Mateo, 1992.Google Scholar
  5. 5.
    Lengauer, T., Upper and lower bounds for the min-cut linear arrangenents problem on trees, SIAM J. Algebraic and Discrete Methods 3 (1982), 99–113.Google Scholar
  6. 6.
    Lopez, A.D., Law, H.F.S., A dense gate matrix layout method for MOS VLSI, IEEE Transactions on Electronic Devices 27 (1980), 1671–1675.Google Scholar
  7. 7.
    Nakano, K., Linear layout of generalized hypercubes, in: Proc. 19th Intl. Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science 790, Springer Verlag, Berlin, 1994, 364–375.Google Scholar
  8. 8.
    Raspaud, A., Sýkora, 0., Vrt'o, I., Cutwidth of the de Bruiju graph, RAIRO-Theoretical Informatics and Applications 26 (1996), 509–514.Google Scholar
  9. 9.
    Yannakakis, M., A polynomial algorithm for the Min cut linear arrangement of trees, J. ACM 32 (1985), 950–988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Imrich Vrt'o
    • 1
  1. 1.Institute for InformaticsSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations