Recording HOL proofs in a structured browsable format

  • Jim Grundy
  • Thomas Långbacka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1349)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Back, J. Grundy, and J. von Wright. Structured calculational proof. Joint Computer Science Technical Report TR-CS-96-09, The Australian National University, Department of Computer Science, Canberra ACT 0200, Australia, 1996.Google Scholar
  2. 2.
    R.-J. R. Back. On correct refinement of programs. J. Comput. Syst. Sci., 23(1):49–68, 1981.Google Scholar
  3. 3.
    M. Butler, J. Grundy, T. Långbacka, R. Rukšėnas, and J. von Wright. The refinement calculator: Proof support for program refinement. In Groves and Reeves, editors, Formal Methods Pacific'97: Proceedings of FMP'97, Discrete Mathematics and Theoretical Computer Science, pages 40–61, Wellington, New Zealand, 1997. Springer-Verlag.Google Scholar
  4. 4.
    M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem proving environment for higher order logic. Cambridge University Press, Cambridge, England, 1993.Google Scholar
  5. 5.
    D. Gries and F. B. Schneider. A Logical Approach to Discrete Math. Texts and Monographs in Computer Science. Springer-Verlag, New York, 1993.Google Scholar
  6. 6.
    J. Grundy. A browsable format for proof presentation. Mathesis Universalis, 1(2), 1996.Google Scholar
  7. 7.
    J. Grundy. Transformational hierarchical reasoning. Comput. J., 39(4):291–302, 1996.Google Scholar
  8. 8.
    T. Långbacka, R. Rukšėnas, and J. von Wright. TkWinHOL: A tool for doing window inference in HOL. In Schubert, Windley, and Alves-Foss, editors, Higher Order Logic Theorem Proving and Its Applications: 8th International Workshop, volume 971 of LNCS, pages 245–260, Aspen Grove, Utah, 1995. Springer-Verlag.Google Scholar
  9. 9.
    P. J. Robinson and J. Staples. Formalizing a hierarchical structure of practical mathematical reasoning. J. Logic Comput., 3(1):47–61, 1993.Google Scholar
  10. 10.
    A. Trybulec and H. A. Blair. Computer aided reasoning. In Parikh, editor, Logic of Programs, volume 193 of LNCS, pages 406–412, New York, 1985. Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Jim Grundy
    • 1
  • Thomas Långbacka
    • 2
    • 3
  1. 1.Department of Computer ScienceThe Australian National UniversityAustralia
  2. 2.Department of Computer ScienceUniversity of HelsinkiFinland
  3. 3.Turku Centre for Computer Science-TUCSFinland

Personalised recommendations