Skip to main content

Automation Techniques in Tropical Diseases

  • Chapter
  • First Online:
Automated Diagnostic Techniques in Medical Microbiology

Abstract

Tropical diseases are considered to be a threat responsible for causing a large number of cases and deaths. For controlling these diseases proper surveillance of the vectors like flies and mosquitoes is necessary. Diagnosis of the pathogens causing these diseases and their treatment also require attention. Researchers are working continuously to develop new devices and software to make diagnosis and control more rapid with high sensitivity and specificity. In this chapter, we have discussed the new automated techniques that have been developed so far and those under development for the control and diagnosis of tropical diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pujara P, Parmar M, Rupakar P, Asawa K, Patel S. An introduction to tropical disease: a review article. Int J Med Microbiol Trop Dis. 2016;2:81.

    Google Scholar 

  2. Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, Lindsay SW. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020;14(1):e0007831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vijayakumar V, Malathi D, Subramaniyaswamy V, Saravanan P, Logesh R. Fog computing-based intelligent healthcare system for the detection and prevention of mosquito-borne diseases. Comput Hum Behav. 2019;100:275–85.

    Article  Google Scholar 

  4. Park J, Kim DI, Choi B, Kang W, Kwon HW. Classification and morphological analysis of vector mosquitoes using deep convolutional neural networks. Sci Rep. 2020;10(1):1–12.

    CAS  Google Scholar 

  5. Minakshi M, Bharti P, McClinton WB III, Mirzakhalov J, Carney RM, Chellappan S. Automating the surveillance of mosquito vectors from trapped specimens using computer vision techniques. In: Proceedings of the 3rd ACM SIGCAS conference on computing and sustainable societies; 2020. p. 105–15.

    Chapter  Google Scholar 

  6. Buckingham SD, Partridge FA, Poulton BC, Miller BS, McKendry RA, Lycett GJ, Sattelle DB. Automated phenotyping of mosquito larvae enables high-throughput screening for novel larvicides and offers potential for smartphone-based detection of larval insecticide resistance. PLoS Negl Trop Dis. 2021;15(6):e0008639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Winkler DA. Use of artificial intelligence and machine learning for discovery of drugs for neglected tropical diseases. Front Chem. 2021;9:614073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Talapko J, Škrlec I, Alebić T, Jukić M, Včev A. Malaria: the past and the present. Microorganisms. 2019;7(6):179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh A, Narang V, Sood N, Garg B, Gupta VK. Malaria diagnosis using automated analysers: a boon for hematopathologists in endemic areas. J Clin Diagn Res. 2015;9(10):EC05–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pillay E, Khodaiji S, Bezuidenhout BC, Litshie M, Coetzer TL. Evaluation of automated malaria diagnosis using the sysmex XN-30 analyser in a clinical setting. Malar J. 2019;18(1):1–14.

    Article  Google Scholar 

  11. Yoon J, Jang WS, Nam J, Mihn DC, Lim CS. An automated microscopic malaria parasite detection system using digital image analysis. Diagnostics. 2021;11(3):527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horning MP, Delahunt CB, Bachman CM, Luchavez J, Luna C, Hu L, Jaiswal MS, Thompson CM, Kulhare S, Janko S, Wilson BK. Performance of a fully-automated system on a WHO malaria microscopy evaluation slide set. Malar J. 2021;20(1):1–11.

    Article  Google Scholar 

  13. Das DK, Ghosh M, Pal M, Maiti AK, Chakraborty C. Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron. 2013;45:97–106.

    Article  PubMed  Google Scholar 

  14. Gemeda AW, de Alvarenga DA, Minas F, Joseph-Munné J, Clols ES, Rubio CM, de Oliveira AD, Nadal S, Bilalli B, Zarzuela FS, Espasa MS. Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: a review. 2022.

    Google Scholar 

  15. Phuakrod A, Kusuwan N, Sripumkhai W, Pattamang P, Wongkamchai S. Semi-automated microfluidic device combined with a MiniPCR-duplex lateral flow dipstick for screening and visual species identification of lymphatic Filariae. Micromachines. 2022;13(2):336.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tongkliang P, Sripumkhai W, Pattamang P, Jeamsaksiri W, Patcharasardtra N, Phuakrod A, Wongkamchai S, Atiwongsangthong N. Semi–automated system microfluidic machine for microfilarial detection. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 2; 2018.

    Google Scholar 

  17. Hernández-Neuta I, Neumann F, Brightmeyer J, Ba Tis T, Madaboosi N, Wei Q, Ozcan A, Nilsson M. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care. J Intern Med. 2019;285(1):19–39.

    Article  PubMed  Google Scholar 

  18. Phuakrod A, Sripumkhai W, Jeamsaksiri W, Pattamang P, Juntasaro E, Thienthong T, Foongladda S, Brindley PJ, Wongkamchai S. Diagnosis of feline filariasis assisted by a novel semi-automated microfluidic device in combination with high resolution melting real-time PCR. Parasit Vectors. 2019;12(1):1–9.

    Article  Google Scholar 

  19. Mayrose H, Sampathila N, Bairy GM, Belurkar S, Saravu K, Basu A, Khan S. Intelligent algorithm for detection of dengue using mobilenetv2-based deep features with lymphocyte nucleus. Expert Syst. 2021;40:e12904.

    Article  Google Scholar 

  20. Ibrahim F, Thio THG, Faisal T, Neuman M. The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review. Sensors. 2015;15(3):6947–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raharjo B, Hadi S. High fluorescent lymphocyte count examination in dengue hemorrhagic patients with SYSMEX Xn-1000 hematology analyzer. Indones J Clinical Pathol Med Laboratory. 2019;25(2):207–10.

    Article  Google Scholar 

  22. Tsai JJ, Liu WL, Lin PC, Huang BY, Tsai CY, Lee PYA, Tsai YL, Chou PH, Chung S, Liu LT, Chen CH. A fully automated sample-to-answer PCR system for easy and sensitive detection of dengue virus in human serum and mosquitos. PLoS One. 2019;14(7):e0218139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Labadin J, Hong BH, Tiong WK, Gill BS, Perera D, Rigit ARH, Singh S, Tan CV, Ghazali SM, Jelip J, Mokhtar N. Development and user testing study of MozzHub: a bipartite network-based dengue hotspot detector. Multimed Tools Appl. 2022;82:1–22.

    Google Scholar 

  24. Li LH, Kaptein SJ, Schmid MA, Zmurko J, Leyssen P, Neyts J, Dallmeier K. A dengue type 2 reporter virus assay amenable to high-throughput screening. Antivir Res. 2020;183:104929.

    Article  CAS  PubMed  Google Scholar 

  25. Daag JV, Ylade M, Adams C, Jadi R, Crisostomo MV, Alpay R, Aportadera ETC, Yoon IK, White L, Deen J, de Silva AM. Evaluation of a new point-of-care test to determine prior dengue infection for potential use in pre-vaccination screening. Clin Microbiol Infect. 2021;27(6):904–8.

    Article  CAS  PubMed  Google Scholar 

  26. Gomes-Alves AG, Maia AF, Cruz T, Castro H, Tomas AM. Development of an automated image analysis protocol for quantification of intracellular forms of Leishmania spp. PLoS One. 2018;13(8):e0201747.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moraes CB, Alcântara LM. Quantification of parasite loads by automated microscopic image analysis. In: Leishmania. New York, NY: Humana Press; 2019. p. 279–88.

    Chapter  Google Scholar 

  28. Eren RO, Kopelyanskiy D, Moreau D, Chapalay JB, Chambon M, Turcatti G, Lye LF, Beverley SM, Fasel N. Development of a semi-automated image-based high-throughput drug screening system. Front Biosci (Elite Ed). 2018;10:242–53.

    Article  PubMed  Google Scholar 

  29. Zare M, Akbarialiabad H, Parsaei H, Asgari Q, Alinejad A, Bahreini MS, Hosseini SH, Ghofrani-Jahromi M, Shahriarirad R, Amirmoezzi Y, Shahriarirad S. A machine learning-based system for detecting leishmaniasis in microscopic images. BMC Infect Dis. 2022;22(1):1–6.

    Article  Google Scholar 

  30. Siqueira-Neto JL, Moon S, Jang J, Yang G, Lee C, Moon HK, Chatelain E, Genovesio A, Cechetto J, Freitas-Junior LH. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl Trop Dis. 2012;6(6):e1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yazdanparast E, Dos Anjos A, Garcia D, Loeuillet C, Shahbazkia HR, Vergnes B. INsPECT, an open-source and versatile software for automated quantification of (Leishmania) intracellular parasites. PLoS Negl Trop Dis. 2014;8(5):e2850.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Morais MCC, Silva D, Milagre MM, de Oliveira MT, Pereira T, Silva JS, Costa LDF, Minoprio P, Junior RMC, Gazzinelli R, de Lana M. Automatic detection of the parasite Trypanosoma cruzi in blood smears using a machine learning approach applied to mobile phone images. PeerJ. 2022;10:e13470.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Centeno CA, Voos JA, Salamero MA, Donet L, Dogliani M, Casasnovas S, Osimani C, LoPresti S. Automated parasitaemia quantification in mice infected with Trypanosoma cruzi. In: 2020 IEEE Congreso Bienal de Argentina (ARGENCON). IEEE; 2020. p. 1–6.

    Google Scholar 

  34. Takagi Y, Nosato H, Doi M, Furukawa K, Sakanashi H. Development of a motion-based cell-counting system for Trypanosoma parasite using a pattern recognition approach. BioTechniques. 2019;66(4):179–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, A. (2024). Automation Techniques in Tropical Diseases. In: Kumar, S., Kumar, A. (eds) Automated Diagnostic Techniques in Medical Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-9943-9_9

Download citation

Publish with us

Policies and ethics