Skip to main content

Automation Techniques in Infectious Diseases

  • Chapter
  • First Online:
Automated Diagnostic Techniques in Medical Microbiology

Abstract

Every year, 14 million people die from infectious diseases worldwide, accounting for 25% of all fatalities. Infectious diseases have severely impacted humankind all over the world and are the leading cause of mortality. Diagnoses of infectious diseases that are inaccurate have an impact on both the patient’s and the community’s health. This review discusses some application-oriented, dependable, secure, and quickly deployable automation technologies for the diagnosis of infectious diseases. Therefore, we highlight the advances and automation technologies that have been regarded as effective means of diagnosis, surveillance, and disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ching F. Bird flu, SARS and beyond. In: 130 years of medicine in Hong Kong; 2018. p. 381–434.

    Chapter  Google Scholar 

  2. Emerging infectious diseases. https://www.hopkinsmedicine.org/health/conditions-and-diseases/emerging-infectious-diseases.

  3. Thomson MC, Stanberry LR. Climate change and vector borne diseases. N Engl J Med. 2022;387(21):1969–78.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nema S, Ghanghoria P, Bharti PK. Malaria elimination in India: bridging the gap between control and elimination. Indian Pediatr. 2020;57(7):613–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. World Malaria Report. 2022; https://www.who.int/publications-detail-redirect/9789240064898.

  7. Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S. Malaria diagnosis: a brief review. Korean J Parasitol. 2009;47(2):93–102.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barcia JJ. The Giemsa stain: its history and applications. Int J Surg Pathol. 2007;15(3):292–6.

    Article  PubMed  Google Scholar 

  9. Maguire JD, Lederman ER, Barcus MJ, O’Meara WAP, Jordon RG, Duong S, et al. Production and validation of durable, high quality standardized malaria microscopy slides for teaching, testing and quality assurance during an era of declining diagnostic proficiency. Malar J. 2006;5(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Image analysis and machine learning for detecting malaria. Transl Res. 2018;194:36–55.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nema S, Rahi M, Sharma A, Bharti PK. Strengthening malaria microscopy using artificial intelligence-based approaches in India. Lancet Reg Health Southeast Asia. 2022;5:100054.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nema S, Nitika N, Anvikar AR, Bharti PK. Malaria slide bank plays a crucial role in achieving and sustaining malaria elimination in India. Asian Pac J Trop Med. 2023;16(10):431–3.

    Article  Google Scholar 

  13. Davidson MS, Andradi-Brown C, Yahiya S, Chmielewski J, O’Donnell AJ, Gurung P, et al. Automated detection and staging of malaria parasites from cytological smears using convolutional neural networks. Biol Imaging. 2021;1:e2.

    Article  PubMed  Google Scholar 

  14. Horning MP, Delahunt CB, Bachman CM, Luchavez J, Luna C, Hu L, et al. Performance of a fully-automated system on a WHO malaria microscopy evaluation slide set. Malar J. 2021;20(1):110.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nema S, Verma AK, Tiwari A, Bharti PK. Digital health care services to control and eliminate malaria in India. Trends Parasitol. 2021;37(2):96–9.

    Article  PubMed  Google Scholar 

  16. Sushma D, Thirupathi Rao N, Bhattacharyya D. A comparative study on automated detection of malaria by using blood smear images. In: Bhattacharyya D, Thirupathi Rao N, editors. Machine intelligence and soft computing. Singapore: Springer; 2021. p. 1–18; (Advances in Intelligent Systems and Computing).

    Google Scholar 

  17. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14:3822–35.

    Article  CAS  PubMed  Google Scholar 

  18. Herpe G, Tasu JP. Impact of the prevalence on the predictive positive value of chest CT in the diagnosis of coronavirus disease (COVID-19). AJR Am J Roentgenol. 2020;215(3):W39.

    Article  PubMed  Google Scholar 

  19. de Barry O, Obadia I, El Hajjam M, Carlier RY. Chest-X-ray is a mainstay for follow-up in critically ill patients with covid-19 induced pneumonia. Eur J Radiol. 2020;129:109075.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mohammed M, Abdulkareem K, Garcia-Zapirain B, Mostafa S, Maashi M, Al-Waisy A, et al. A comprehensive investigation of machine learning feature extraction and classification methods for automated diagnosis of COVID-19 based on X-ray images. CMC. 2020;66(3):3289–310.

    Article  Google Scholar 

  21. Loey M, Smarandache F, NE MK. Within the lack of chest COVID-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning. Symmetry. 2020;12(4):651.

    Article  CAS  Google Scholar 

  22. Toğaçar M, Ergen B, Cömert Z. COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput Biol Med. 2020;121:103805.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ni Q, Sun ZY, Qi L, Chen W, Yang Y, Wang L, et al. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol. 2020;30(12):6517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nema S, Singh A, Krishna S, Poriya R, Dubey S, Ali NA, et al. Unreported mixed plasmodium species infection may increase vivax malaria in India: a challenge for malaria elimination. Trans R Soc Trop Med Hyg. 2022;116:600–3.

    Article  CAS  PubMed  Google Scholar 

  25. Sanger F, Donelson JE, Coulson AR, Kössel H, Fischer D. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA. Proc Natl Acad Sci U S A. 1973;70(4):1209–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tabik S, Gómez-Ríos A, Martín-Rodríguez JL, Sevillano-García I, Rey-Area M, Charte D, et al. COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images. IEEE J Biomed Health Inform. 2020;24(12):3595–605.

    Article  CAS  PubMed  Google Scholar 

  27. Chen W. Current advances and challenges in the development of Acinetobacter vaccines. Hum Vaccin Immunother. 2015;11(10):2495–500.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, et al. Sequencing and beyond: integrating molecular “omics” for microbial community profiling. Nat Rev Microbiol. 2015;13(6):360–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PLoS One. 2014;9(1):e78644.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol. 2015;33(6):623–30.

    Article  CAS  PubMed  Google Scholar 

  33. Wilhelm BT, Landry JR. RNA-seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods. 2009;48(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  34. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.

    Article  CAS  PubMed  Google Scholar 

  35. Zuckerman NS, Bar-Or I, Sofer D, Bucris E, Morad H, Shulman LM, et al. Emergence of genetically linked vaccine-originated poliovirus type 2 in the absence of oral polio vaccine, Jerusalem, April to July 2022. Euro Surveill. 2022;27(37):2200694; https://europepmc.org/articles/PMC9479469. [cited 2022 Nov 29].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thornhill JP, Barkati S, Walmsley S, Rockstroh J, Antinori A, Harrison LB, et al. Monkeypox virus infection in humans across 16 countries—April–June 2022. N Engl J Med. 2022;387(8):679–91.

    Article  CAS  PubMed  Google Scholar 

  37. Hindustan Times. WHO to use “mpox” to denote monkeypox. 2022; https://www.hindustantimes.com/world-news/who-to-use-mpox-to-denote-monkeypox-101669635747409.html.

    Google Scholar 

  38. WHO releases 10-year strategy for genomic surveillance of pathogens. https://www.who.int/news/item/30-03-2022-who-releases-10-year-strategy-for-genomic-surveillance-of-pathogens.

  39. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020;383(16):1522.

    Article  CAS  PubMed  Google Scholar 

  40. Ryerson AB. Wastewater testing and detection of poliovirus type 2 genetically linked to virus isolated from a paralytic polio case—New York, March 9–October 11, 2022. MMWR Morb Mortal Wkly Rep. 2022;71:1418; https://www.cdc.gov/mmwr/volumes/71/wr/mm7144e2.htm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klapsa D, Wilton T, Zealand A, Bujaki E, Saxentoff E, Troman C, et al. Sustained detection of type 2 poliovirus in London sewage between February and July, 2022, by enhanced environmental surveillance. Lancet. 2022;400(10362):1531–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gowd KK, Veerababu D, Reddy VR. COVID-19 and the legislative response in India: the need for a comprehensive health care law. J Public Aff. 2021;21(4):e2669.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Duggal R. Bhore committee (1946) and its relevance today. Indian J Pediatr. 1991;58(4):395–406.

    Article  CAS  PubMed  Google Scholar 

  44. IDSP Milestones: Integrated Disease Surveillance Programme (IDSP). https://idsp.nic.in/index1.php?lang=1&level=1&sublinkid=5770&lid=3699.

  45. Home: National Health Mission. https://nhm.gov.in/.

  46. vikaspedia Domains. https://vikaspedia.in/health/health-directory/vision-2035-public-health-surveillance-in-india.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nema, S., Kumari, M., Ghosh, S.K. (2024). Automation Techniques in Infectious Diseases. In: Kumar, S., Kumar, A. (eds) Automated Diagnostic Techniques in Medical Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-9943-9_10

Download citation

Publish with us

Policies and ethics