Skip to main content

Iterative Hard Thresholding Algorithm Using Norm Exponent

  • Conference paper
  • First Online:
Artificial Intelligence for Sustainable Energy (GENCITY 2023)

Abstract

Due to numerous data that is required to transfer in the information age, there is an increasing demand of computation and memory usage. Compressed sensing (CS) appears to be a promising technique in order to save both the computation and data storage. Iterative hard thresholding (IHT) is one of the signal recovery methods in the CS. Despite its fast computation, the IHT often delivers poor performance in the signal reconstruction accuracy. To solve this issue, we present an improved IHT in this work by using the fractional norm. Numerical simulation is demonstrated to illustrate better accuracy of the signal reconstruction than former approaches in various scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amin, M. (ed.): Compressive Sensing for Urban Radar. CRC Press, Boca Raton, FL (2015)

    Google Scholar 

  2. Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5–6), 629–654 (2008)

    Article  MathSciNet  Google Scholar 

  3. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Google Scholar 

  4. Boche, H., Calderbank, R., Kutyniok, G., Vybíral, J.: Compressed Sensing and its Applications: MATHEON Workshop 2013. Applied and Numerical Harmonic Analysis, Birkhäuser, Cham, Switzerland (2015)

    Google Scholar 

  5. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  6. Carmi, A.Y., Godsill, S.J., Mihaylova, L.S. (eds.): Compressed Sensing & Sparse Filtering. Signals and Communication Technology. Springer, Berlin/Heidelberg, Germany (2014)

    Google Scholar 

  7. Chen, C.: Compressive Sensing of Earth Observations. Signal and Image Processing of Earth Observations. CRC Press, Boca Raton, FL (2017)

    Google Scholar 

  8. Coluccia, G., Ravazzi, C., Magli, E.: Compressed Sensing for Distributed Systems. Signal Processing. Springer, Berlin, Heidelberg, Germany (2015)

    Google Scholar 

  9. Conde, M.H. (ed.): Compressive Sensing for the Photonic Mixer Device: Fundamentals. Methods and Results. Springer, Wiesbaden, Germany (2017)

    Google Scholar 

  10. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(2), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  11. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, New York, NY (2010)

    Book  Google Scholar 

  12. Eldar, Y.C., Kutyniok, G. (eds.): Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge, UK (2012)

    Google Scholar 

  13. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, New York, NY (2013)

    Google Scholar 

  14. Han, Z., Li, H., Yin, W. (eds.): Compressive Sensing for Wireless Networks. Cambridge University Press, Cambridge, UK (2013)

    Google Scholar 

  15. Khosravy, M., Dey, N., Duque, C.A.: Compressive Sensing in Healthcare, Advances in Ubiquitous Sensing Applications for Healthcare, vol. 11. Academic Press, London, UK (2020)

    Google Scholar 

  16. Kong, L., Wang, B., Chen, G.: When Compressive Sensing Meets Mobile Crowdsensing. Springer, Singapore (2019)

    Book  Google Scholar 

  17. Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Amer. J. Math. 73(3), 615–624 (1951)

    Article  MathSciNet  Google Scholar 

  18. Maio, A.D., Eldar, Y.C., Haimovich, A.M. (eds.): Compressed Sensing in Radar Signal Processing. Cambridge University Press, Cambridge, UK (2020)

    Google Scholar 

  19. Meng, N., Zhao, Y.B.: Newton-step-based hard thresholding algorithms for sparse signal recovery. IEEE Trans. Signal Process. 68, 6594–6606 (2020)

    Article  MathSciNet  Google Scholar 

  20. Mishra, A.K., Verster, R.S.: Compressive Sensing Based Algorithms for Electronic Defence. Signals and Communication Technology, Springer, Cham, Switzerland (2017)

    Google Scholar 

  21. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2014)

    Google Scholar 

  22. Patel, V.M., Chellappa, R.: Sparse Representations and Compressive Sensing for Imaging and Vision. Springer, New York, NY (2013)

    Google Scholar 

  23. Pfander, G.E.: Sampling Theory, A Renaissance: Compressive Sensing and Other Developments. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham, Switzerland (2015)

    Google Scholar 

  24. Qiu, K., Dogandžić, A.: Sparse signal reconstruction via ECME hard thresholding. IEEE Trans. Signal Process. 60(9), 4551–4569 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tausiesakul, B.: Iterative hard thresholding using least squares initialization. In: Proceedings of IEEE International Conference on Communication Systems and Network Technologies 2022 (CSNT 2022). pp. 612–615. Indore, India, Apr 2022

    Google Scholar 

  26. Testa, M., Valsesia, D., Bianchi, T., Magli, E.: Compressed Sensing for Privacy-Preserving Data Processing. Signal Processing. Springer, Singapore (2019)

    Google Scholar 

  27. Thanki, R.M., Dwivedi, V.J., Borisagar, K.R. (eds.): Multibiometric Watermarking with Compressive Sensing Theory: Techniques and Applications. Signals and Communication Technology, Springer, Cham, Switzerland (2018)

    Google Scholar 

  28. Wen, J., He, H., He, Z., Zhu, F.: A pseudo-inverse-based hard thresholding algorithm for sparse signal recovery. IEEE Trans. Intell. Transp, Syst (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krissada Asavaskulkiet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tausiesakul, B., Asavaskulkiet, K. (2024). Iterative Hard Thresholding Algorithm Using Norm Exponent. In: Mathew, J., Gopal, L., Juwono, F.H. (eds) Artificial Intelligence for Sustainable Energy. GENCITY 2023. Lecture Notes in Electrical Engineering, vol 1142. Springer, Singapore. https://doi.org/10.1007/978-981-99-9833-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9833-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9832-6

  • Online ISBN: 978-981-99-9833-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics