Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 70 Accesses

Abstract

The last chapter of this book explores the significant domain of “Interface Engineering” within composite materials, providing a detailed examination of techniques to enhance fiber–matrix interfaces for optimal material performance. The chapter is thoughtfully structured, beginning with an introductory overview followed by a discussion on the interface engineering in ductile fiber/thermosets composites. Further, there is an extensive analysis of surface treatments of fiber, wherein surface treatment methods for glass fibers, carbon fibers, and Kevlar fibers are expounded, each tailored to meet the unique requirements of various fiber types. A substantial portion which is the tail of this chapter discusses the influence of strain rate on the properties of a sandwiched epoxy interface as investigated by researchers. It encompasses sample preparation, quasi-static indentation, dynamic indentation, and nanomechanical Raman spectrometry. Through these comprehensive analyses, this chapter sheds light on the intricate interplay of factors affecting material behavior in high strain-rate scenarios. It equips readers with essential knowledge of interface engineering, encompassing fiber surface treatments, and microscale mechanisms that influence reinforcement and failure. The chapter's informative depth is further enriched by a well-curated set of references, enabling readers to explore these topics more extensively in specialized literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shubham, Prusty, R.K., Ray, B.C.: Influence of interphase characteristics on the elastic modulus of unidirectional glass-reinforced epoxy composites: a computational micromechanics study. International Journal of Materials Research. (2023). https://doi.org/10.1515/ijmr-2022-0032

  2. Wetherhold, R.C., Corjon, M., Das, P.K.: Multiscale considerations for interface engineering to improve fracture toughness of ductile fiber/thermoset matrix composites. Compos. Sci. Technol. 67, 2428–2437 (2007). https://doi.org/10.1016/j.compscitech.2007.01.004

    Article  Google Scholar 

  3. Chawla, K.K.: Composite Materials: Science and Engineering. Springer Science and Business Media (2012)

    Google Scholar 

  4. Mallick, P.K.: Fiber-Reinforced Composites: Materials, Manufacturing, and Design, Third Edition. CRC Press, Boca Raton (2007). https://doi.org/10.1201/9781420005981

  5. Gangineni, P.K., Gupta K., B.N.V.S.G., Patnaik, S., Prusty, R.K., Ray, B.C.: Recent advancements in interface engineering of carbon fiber reinforced polymer composites and their durability studies at different service temperatures. Polymer Composites. 43, 4126–4164 (2022). https://doi.org/10.1002/pc.26716

  6. Fukunaga, A., Ueda, S.: Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices. Compos. Sci. Technol. 60, 249–254 (2000). https://doi.org/10.1016/S0266-3538(99)00118-9

    Article  Google Scholar 

  7. Bismarck, A., Pfaffernoschke, M., Springer, J., Schulz, E.: Polystyrene-grafted Carbon Fibers: Surface Properties and Adhesion to Polystyrene. J. Thermoplast. Compos. Mater. 18, 307–331 (2005). https://doi.org/10.1177/0892705705049559

    Article  Google Scholar 

  8. An, F., Lu, C., Guo, J., He, S., Lu, H., Yang, Y.: Preparation of vertically aligned carbon nanotube arrays grown onto carbon fiber fabric and evaluating its wettability on effect of composite. Appl. Surf. Sci. 258, 1069–1076 (2011). https://doi.org/10.1016/j.apsusc.2011.09.003

    Article  ADS  Google Scholar 

  9. Zhao, F., Huang, Y.: Uniform modification of carbon fibers in high density fabric by γ-ray irradiation grafting. Mater. Lett. 65, 3351–3353 (2011). https://doi.org/10.1016/j.matlet.2011.05.023

    Article  Google Scholar 

  10. Dai, Z., Shi, F., Zhang, B., Li, M., Zhang, Z.: Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl. Surf. Sci. 257, 6980–6985 (2011). https://doi.org/10.1016/j.apsusc.2011.03.047

    Article  ADS  Google Scholar 

  11. An, F., Lu, C., Li, Y., Guo, J., Lu, X., Lu, H., He, S., Yang, Y.: Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater. Des. 33, 197–202 (2012). https://doi.org/10.1016/j.matdes.2011.07.027

    Article  Google Scholar 

  12. Tang, G., Zang, Z., Chang, D., Wei, G., Wang, D., Mi, W., Yan, W., Huang, W.: Study on the Interfacial Behavior of Clay-Coated Carbon Fiber-Reinforced PEI Composites. Polym.-Plast. Technol. Eng. 51, 861–865 (2012). https://doi.org/10.1080/03602559.2012.671420

    Article  Google Scholar 

  13. Rhee, K.Y., Park, S.J., Hui, D., Qiu, Y.: Effect of oxygen plasma-treated carbon fibers on the tribological behavior of oil-absorbed carbon/epoxy woven composites. Compos. B Eng. 43, 2395–2399 (2012). https://doi.org/10.1016/j.compositesb.2011.11.046

    Article  Google Scholar 

  14. Meng, L., Fan, D., Zhang, C., Jiang, Z., Huang, Y.: The effect of oxidation treatment with supercritical water/hydrogen peroxide system on intersurface performance for polyacrylonitrile-based carbon fibers. Appl. Surf. Sci. 273, 167–172 (2013). https://doi.org/10.1016/j.apsusc.2013.02.007

    Article  ADS  Google Scholar 

  15. Chen, L., Jin, H., Xu, Z., Shan, M., Tian, X., Yang, C., Wang, Z., Cheng, B.: A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface. Mater. Chem. Phys. 145, 186–196 (2014). https://doi.org/10.1016/j.matchemphys.2014.02.001

    Article  ADS  Google Scholar 

  16. Zhang, S., Liu, W., Wang, J., Li, B., Hao, L., Wang, R.: Improvement of interfacial properties of carbon fiber-reinforced poly(phthalazinone ether ketone) composites by introducing carbon nanotube to the interphase. Polym. Compos. 36, 26–33 (2015). https://doi.org/10.1002/pc.22907

    Article  Google Scholar 

  17. Verma, D., Exner, M., Tomar, V.: An investigation into strain rate dependent constitutive properties of a sandwiched epoxy interface. Mater. Des. 112, 345–356 (2016). https://doi.org/10.1016/j.matdes.2016.09.068

    Article  Google Scholar 

  18. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  ADS  Google Scholar 

  19. Verma, D., Tomar, V.: An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton. Mater. Sci. Eng., C 44, 371–379 (2014). https://doi.org/10.1016/j.msec.2014.08.033

    Article  Google Scholar 

  20. Marsh, J., Han, Y.S., Verma, D., Tomar, V.: An investigation into plastic deformation of irradiated tungsten microstructure at elevated temperatures using the Anand’s viscoplastic model. Int. J. Plast 74, 127–140 (2015). https://doi.org/10.1016/j.ijplas.2015.06.011

    Article  Google Scholar 

  21. Kalidindi, S.R., Pathak, S.: Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater. 56, 3523–3532 (2008). https://doi.org/10.1016/j.actamat.2008.03.036

    Article  ADS  Google Scholar 

  22. Verma, D., Tomar, V.: An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) at elevated temperatures. Mater. Sci. Eng., C 49, 243–250 (2015). https://doi.org/10.1016/j.msec.2015.01.003

    Article  Google Scholar 

  23. Verma, D., Tomar, V.: A comparison of nanoindentation creep deformation characteristics of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) exoskeletons. J. Mater. Res. 30, 1110–1120 (2015). https://doi.org/10.1557/jmr.2015.69

    Article  ADS  Google Scholar 

  24. Verma, D., Qu, T., Tomar, V.: Scale Dependence of the Mechanical Properties and Microstructure of Crustaceans Thin Films as Biomimetic Materials. JOM 67, 858–866 (2015). https://doi.org/10.1007/s11837-015-1337-4

    Article  Google Scholar 

  25. Johnson, K.L.: Contact Mechanics. Cambridge University Press (1987)

    Google Scholar 

  26. Somekawa, H., Schuh, C.A.: High-strain-rate nanoindentation behavior of fine-grained magnesium alloys. J. Mater. Res. 27, 1295–1302 (2012). https://doi.org/10.1557/jmr.2012.52

    Article  ADS  Google Scholar 

  27. Subhash, G., Maiti, S., Geubelle, P.H., Ghosh, D.: Recent Advances in Dynamic Indentation Fracture, Impact Damage and Fragmentation of Ceramics. J. Am. Ceram. Soc. 91, 2777–2791 (2008). https://doi.org/10.1111/j.1551-2916.2008.02624.x

    Article  Google Scholar 

  28. Jennett, N.M., Nunn, J.: High resolution measurement of dynamic (nano) indentation impact energy: a step towards the determination of indentation fracture resistance. Phil. Mag. 91, 1200–1220 (2011). https://doi.org/10.1080/14786435.2010.485585

    Article  ADS  Google Scholar 

  29. Gan, M., Tomar, V.: An in situ platform for the investigation of Raman shift in micro-scale silicon structures as a function of mechanical stress and temperature increase. Rev. Sci. Instrum. 85, 013902 (2014). https://doi.org/10.1063/1.4861201

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bankim Chandra Ray .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shubham, Ray, B.C. (2024). Interface Engineering. In: Fiber Reinforced Polymer (FRP) Composites in Ballistic Protection. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9746-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9746-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9745-9

  • Online ISBN: 978-981-99-9746-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics