Skip to main content

Evaluating the Impact of Climate Change on Antimicrobial Resistance and Rise in Dysentery Using Next Generation Sequencing Based Approaches

  • Chapter
  • First Online:
Microbiology-2.0 Update for a Sustainable Future

Abstract

Climate change, typically manifesting itself in the form of rising global temperature and frequently occurring drastic weather phenomena, has become the new norm for the twenty-first century. Incidence of infectious diseases like dysentery together with the evolution and spread of multi-drug resistant pathogens, appear as the two most vulnerable aspects of the ongoing climate crisis. The altered climatic conditions, can influence a myriad of events, from pathogen replication and survival to accelerating the exchange of resistant genes between microbes, thereby amplifying the occurrence of food and water borne infections and simultaneously lowering the efficacy of available antibiotics. The need of the hour is to develop and standardize rapid in situ detection methods which will enable us to estimate the extent of pathogenic microbes in a particular site effectively. Use of short read and long read sequencing methods coupled with standard culture dependent paradigms offers us a very rapid protocol for evaluating disease burden and estimating the abundance of antibiotic resistance genes (ARG’S). This chapter highlights the impact of the effects of individual climatic determinants, like, temperature, relative humidity, droughts, floods, etc., on the magnitude and frequency of dysentery occurrence and emergence of resistant strains and provides a detailed methodology of microbial monitoring from environmental niches using next generation sequencing based techniques.

These authors “Sarmishta Mukhopadhyay, Rupsha Karmakar” have equally contributed to the current work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar, J., 1997. Broad-and narrow-spectrum antibiotics: an unhelpful categorization. Clinical Microbiology and Infection3(4), pp.395-396.

    Article  Google Scholar 

  • Afshinnekoo, E., Meydan, C., Chowdhury, S., Jaroudi, D., Boyer, C., Bernstein, N., Maritz, J.M., Reeves, D., Gandara, J., Chhangawala, S. and Ahsanuddin, S., 2015. Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell systems1(1), pp.72-87.

    Article  Google Scholar 

  • Alfaro-Núñez, A., Astorga, D., Cáceres-Farías, L., Bastidas, L., Soto Villegas, C., Macay, K., and Christensen, J.H. 2021. Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Scientific reports, 11(1), pp.6424.

    Article  Google Scholar 

  • Aminharati, F., Soltan Dallal, M.M., Ehrampoush, M.H., Dehghani-Tafti, A., Yaseri, M., Memariani, M. and Rajabi, Z., 2018. The effect of environmental parameters on the incidence of Shigella outbreaks in Yazd province, Iran. Water Science and Technology: Water Supply18(4), pp.1388-1395.

    Google Scholar 

  • AMR surveillance Network, Indian Council of Medical Research. 2019.

    Google Scholar 

  • Azam, M., Jan, A.T. and Haq, Q.M., 2016. Bla CTX-M-152, a novel variant of CTX-M-group-25, identified in a study performed on the prevalence of multidrug resistance among natural inhabitants of river Yamuna, India. Frontiers in microbiology7, p.176.

    Google Scholar 

  • Bartlett, J.G., 1982. Chloramphenicol. Medical Clinics of North America66(1), pp.91-102.

    Article  Google Scholar 

  • Berendes, D., Knee, J., Sumner, T., Capone, D., Lai, A., Wood, A., Patel, S., Nalá, R., Cumming, O. and Brown, J., 2019. Gut carriage of antimicrobial resistance genes among young children in urban Maputo, Mozambique: Associations with enteric pathogen carriage and environmental risk factors. PLoS One14(11), p.e0225464.

    Article  Google Scholar 

  • Blaskovich, M.A., Hansford, K.A., Butler, M.S., Jia, Z., Mark, A.E. and Cooper, M.A., 2018. Developments in glycopeptide antibiotics. ACS Infectious Diseases4(5), pp.715-735.

    Article  Google Scholar 

  • Brumfield, K.D., Leddy, M., Usmani, M., Cotruvo, J.A., Tien, C.T., Dorsey, S., Graubics, K., Fanelli, B., Zhou, I., Registe, N. and Dadlani, M., 2022. Microbiome analysis for wastewater surveillance during COVID-19. MBio, 13(4), pp.e00591-22.

    Article  Google Scholar 

  • Burnham, J.P., 2021. Climate change and antibiotic resistance: a deadly combination. Therapeutic Advances in Infectious Disease8, p.2049936121991374.

    Article  Google Scholar 

  • Callahan, B.J., Wong, J., Heiner, C., Oh, S., Theriot, C.M., Gulati, A.S., McGill, S.K. and Dougherty, M.K., 2019. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic acids research47(18), pp.e103-e103.

    Article  Google Scholar 

  • Center for Disease Dynamics, Economics & Policy, 2018. ResistanceMap: antibiotic resistance. The Center for Disease Dynamics Economics & Policy.

    Google Scholar 

  • Chakrabarti, S. and Ganguli, S., 2013. Structural analyses of Shigella invasion proteins reveals non-conserved; intrinsically unstructured regions. International Letters of Natural Sciences, 5.

    Google Scholar 

  • Chan, A.W., Naphtali, J. and Schellhorn, H.E., 2019. High-throughput DNA sequencing technologies for water and wastewater analysis. Science progress, 102(4), pp.351-376.

    Article  Google Scholar 

  • Chen, Y., Fan, L.C., Chai, Y.H. and Xu, J.F., 2022. Advantages and challenges of metagenomic sequencing for the diagnosis of pulmonary infectious diseases. The Clinical Respiratory Journal16(10), pp.646-656.

    Article  Google Scholar 

  • Chen, C.C., Lin, C.Y. and Chen, K.T., 2019. Epidemiologic features of shigellosis and associated climatic factors in Taiwan. Medicine98(34).

    Google Scholar 

  • Chen, J., McIlroy, S.E., Archana, A., Baker, D.M. and Panagiotou, G., 2019. A pollution gradient contributes to the taxonomic, functional, and resistome diversity of microbial communities in marine sediments. Microbiome7, pp.1−12.

    Google Scholar 

  • Diamond, M.B., Keshaviah, A., Bento, A.I., Conroy-Ben, O., Driver, E.M., Ensor, K.B., Halden, R.U., Hopkins, L.P., Kuhn, K.G., Moe, C.L. and Rouchka, E.C., 2022. Wastewater surveillance of pathogens can inform public health responses. Nature Medicine28(10), pp.1992-1995.

    Article  Google Scholar 

  • Emont, J.P., Ko, A.I., Homasi-Paelate, A., Ituaso-Conway, N. and Nilles, E.J., 2017. Epidemiological investigation of a diarrhea outbreak in the South Pacific island nation of Tuvalu during a severe La Niña–associated drought emergency in 2011. The American journal of tropical medicine and hygiene96(3), p.576.

    Google Scholar 

  • Garner, E., Davis, B.C., Milligan, E., Blair, M.F., Keenum, I., Maile-Moskowitz, A., Pan, J., Gnegy, M., Liguori, K., Gupta, S. and Prussin II, A.J., 2021. Next generation sequencing approaches to evaluate water and wastewater quality. Water Research, 194, p.116907.

    Article  Google Scholar 

  • GONZALEZ III, U.S. and Spencer, J.P., 1998. Aminoglycosides: a practical review. American family physician58(8), pp.1811-1820.

    Google Scholar 

  • Harikrishnan, H., Ismail, A. and Banga Singh, K.K., 2013. Temperature-regulated expression of outer membrane proteins in Shigella flexneri. Gut pathogens5(1), pp.1-7.

    Article  Google Scholar 

  • Harrington, A., Vo, V., Papp, K., Tillett, R.L., Chang, C.L., Baker, H., Shen, S., Amei, A., Lockett, C., Gerrity, D. and Oh, E.C., 2022. Urban monitoring of antimicrobial resistance during a COVID-19 surge through wastewater surveillance. Science of The Total Environment853, p.158577.

    Article  Google Scholar 

  • Hendriksen, R.S., Munk, P., Njage, P., Van Bunnik, B., McNally, L., Lukjancenko, O., Röder, T., Nieuwenhuijse, D., Pedersen, S.K., Kjeldgaard, J. and Kaas, R.S., 2019. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature communications10(1), p.1124.

    Article  Google Scholar 

  • Hilt, E.E. and Ferrieri, P., 2022. Next generation and other sequencing technologies in diagnostic microbiology and infectious diseases. Genes, 13(9), p.1566.

    Article  Google Scholar 

  • Jiang, X., Cui, X., Xu, H., Liu, W., Tao, F., Shao, T., Pan, X. and Zheng, B., 2019. Whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from a wastewater treatment plant in China. Frontiers in Microbiology, 10, p.1797.

    Article  Google Scholar 

  • Jordan, E., Voide, C., Petignat, P.A. and Gobin, N., 2020. Cephalosporins in clinical practice. Revue Medicale Suisse16(710), pp.1906-1911.

    Article  Google Scholar 

  • Kaba, H.E., Kuhlmann, E. and Scheithauer, S., 2020. Thinking outside the box: Association of antimicrobial resistance with climate warming in Europe–A 30 country observational study. International journal of hygiene and environmental health223(1), pp.151-158.

    Article  Google Scholar 

  • Khalil, I.A., Troeger, C., Blacker, B.F., Rao, P.C., Brown, A., Atherly, D.E., Brewer, T.G., Engmann, C.M., Houpt, E.R., Kang, G. and Kotloff, K.L., 2018. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990–2016. The Lancet infectious diseases18(11), pp.1229-1240.

    Article  Google Scholar 

  • Kwiatkowska, B. and Maślińska, M., 2012. Macrolide therapy in chronic inflammatory diseases. Mediators of inflammation2012.

    Google Scholar 

  • Langford, B.J., So, M., Raybardhan, S., Leung, V., Soucy, J.P.R., Westwood, D., Daneman, N. and MacFadden, D.R., 2021. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clinical microbiology and infection27(4), pp.520-531.

    Article  Google Scholar 

  • Li, C., Wu, X., Ji, D., Liu, J., Yin, J. and Guo, Z., 2019. Climate change impacts the epidemic of dysentery: determining climate risk window, modeling and projection. Environmental Research Letters14(10), pp.104019.

    Article  Google Scholar 

  • Liu, X., Liu, Z., Zhang, Y. and Jiang, B., 2017. The effects of floods on the incidence of bacillary dysentery in Baise (Guangxi Province, China) from 2004 to 2012. International journal of environmental research and public health14(2), p.179.

    Article  Google Scholar 

  • Liu, Z., Klümper, U., Liu, Y., Yang, Y., Wei, Q., Lin, J.G., Gu, J.D. and Li, M., 2019. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environment international, 129, pp.208-220.

    Article  Google Scholar 

  • Logar-Henderson, C., Ling, R., Tuite, A.R. and Fisman, D.N., 2019. Effects of large-scale oceanic phenomena on non-cholera vibriosis incidence in the United States: implications for climate change. Epidemiology & Infection147.

    Google Scholar 

  • MacFadden, D.R., McGough, S.F., Fisman, D., Santillana, M. and Brownstein, J.S., 2018. Antibiotic resistance increases with local temperature. Nature Climate Change8(6), pp.510-514.

    Article  Google Scholar 

  • Majalekar, P.P. and Shirote, P.J., 2020. Fluoroquinolones: blessings or curses. Current Drug Targets21(13), pp.1354-1370.

    Article  Google Scholar 

  • Michael, L., Bennish, Sabeena, Ahmed. 2020. Shigellosis. In: Edward, T. Ryan, David R. Hill, Tom Solomon, Naomi E. Aronson, Timothy P. Endy (Eds.), Hunter's Tropical Medicine and Emerging Infectious Diseases, 10th ed., pp. 492–499.

    Google Scholar 

  • Mohsin, M., Shad, A.A., Ali, J., and Sajjad-ur-Rahman. 2020. Antimicrobial Resistance, Food Systems and Climate Change. In Panwar, H., Sharma, C., Lichtfouse, E (Eds.). Sustainable Agriculture Reviews (46). Springer, Cham. doi:https://doi.org/10.1007/978-3-030-53024-2_3

  • Moors, E., Singh, T., Siderius, C., Balakrishnan, S. and Mishra, A., 2013. Climate change and waterborne diarrhoea in northern India: Impacts and adaptation strategies. Science of the Total Environment468, pp.S139-S151.

    Article  Google Scholar 

  • Patrier, J. and Timsit, J.F., 2020. Carbapenem use in critically ill patients. Current Opinion in Infectious Diseases33(1), pp.86-91.

    Article  Google Scholar 

  • Qin, D., 2019. Next-generation sequencing and its clinical application. Cancer biology & medicine16(1), p.4.

    Article  Google Scholar 

  • Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J. and Segata, N., 2017. Shotgun metagenomics, from sampling to analysis. Nature biotechnology35(9), pp.833-844.

    Article  Google Scholar 

  • Ríos-Castro, R., Cabo, A., Teira, E., Cameselle, C., Gouveia, S., Payo, P., Novoa, B. and Figueras, A., 2023. High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant. Science of The Total Environment861, p.160531.

    Article  Google Scholar 

  • Rodríguez-Verdugo, A., Lozano-Huntelman, N., Cruz-Loya, M., Savage, V. and Yeh, P., 2020. Compounding effects of climate warming and antibiotic resistance. IScience23(4).

    Google Scholar 

  • Runcharoen, C., Moradigaravand, D., Blane, B., Paksanont, S., Thammachote, J., Anun, S., Parkhill, J., Chantratita, N. and Peacock, S.J., 2017. Whole genome sequencing reveals high-resolution epidemiological links between clinical and environmental Klebsiella pneumoniae. Genome medicine, 9(1), pp.1-10.

    Article  Google Scholar 

  • Shakya, M., Lo, C.C. and Chain, P.S., 2019. Advances and challenges in metatranscriptomic analysis. Frontiers in genetics, 10, p.904.

    Article  Google Scholar 

  • Shokralla, S., Spall, J.L., Gibson, J.F. and Hajibabaei, M., 2012. Next‐generation sequencing technologies for environmental DNA research. Molecular ecology, 21(8), pp.1794-1805.

    Article  Google Scholar 

  • Singh, M., Ganguli, S. and Ghosh, M.M., 2019. Comparative metagenomic dataset of hospital effluent microbiome from rural and urban hospitals in West Bengal. Data in brief25, p.104264.

    Article  Google Scholar 

  • Skariyachan, S., Mahajanakatti, A.B., Grandhi, N.J., Prasanna, A., Sen, B., Sharma, N., Vasist, K.S. and Narayanappa, R., 2015. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India. Environmental monitoring and assessment187, pp.1-13.

    Article  Google Scholar 

  • Song, Y.J., Cheong, H.K., Ki, M., Shin, J.Y., Hwang, S.S., Park, M., Ki, M. and Lim, J., 2018. The epidemiological influence of climatic factors on shigellosis incidence rates in Korea. International journal of environmental research and public health15(10), pp.2209.

    Article  Google Scholar 

  • Stefanini, I. and Cavalieri, D., 2018. Metagenomic approaches to investigate the contribution of the vineyard environment to the quality of wine fermentation: potentials and difficulties. Frontiers in Microbiology9, p.991.

    Article  Google Scholar 

  • Sweileh, W.M., 2020. Bibliometric analysis of peer-reviewed literature on climate change and human health with an emphasis on infectious diseases. Globalization and health16(1), pp.1-17.

    Article  Google Scholar 

  • Taneja, N. and Mewara, A., 2016. Shigellosis: epidemiology in India. The Indian journal of medical research143(5), p.565.

    Article  Google Scholar 

  • The, H.C., Thanh, D.P., Holt, K.E., Thomson, N.R. and Baker, S., 2016. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nature Reviews Microbiology14(4), pp.235-250.

    Article  Google Scholar 

  • Totsuka, K. 2007. Nihon rinsho. Japanese journal of clinical medicine, 65 Suppl 3, pp. 675–680.

    Google Scholar 

  • Unno, T., Staley, C., Brown, C.M., Han, D., Sadowsky, M.J. and Hur, H.G., 2018. Fecal pollution: new trends and challenges in microbial source tracking using next‐generation sequencing. Environmental microbiology20(9), pp.3132-3140.

    Article  Google Scholar 

  • Vikram, A., Lipus, D. and Bibby, K., 2016. Metatranscriptome analysis of active microbial communities in produced water samples from the Marcellus Shale. Microbial ecology, 72, pp.571-581.

    Article  Google Scholar 

  • Wang, Z., Gao, J., Zhao, Y., Dai, H., Jia, J. and Zhang, D., 2021. Plastisphere enrich antibiotic resistance genes and potential pathogenic bacteria in sewage with pharmaceuticals. Science of The Total Environment768, p.144663.

    Article  Google Scholar 

  • WHO Media Centre. 2017. News Release. WHO publishes list of bacteria for which new antibiotics are urgently needed. http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/.

  • World Health Organization. 2019. Food Safety—Climate Change and the Role of WHO. https://www.who.int/foodsafety/publications/all/Climate_Change_Document.pdf?ua=1

  • World Health Organization, 2021. Global antimicrobial resistance and use surveillance system (GLASS) report: 2021.

    Google Scholar 

  • Zhu, L., Zhao, G., Stein, R., Zheng, X., Hu, W., Shang, N., Bu, X., Liu, X., Wang, J., Feng, E. and Wang, B., 2010. The proteome of Shigella flexneri 2a 2457T grown at 30 and 37 C. Molecular & Cellular Proteomics9(6), pp.1209-1220.

    Article  Google Scholar 

Download references

Acknowledgements

The authors hereby express their sincere gratitude to the authorities of their respective institutions for their constant support and for providing the necessary infrastructure for completion of the work. Authors acknowledge the funding provided by the DBT Grant (BT/INF/22/SP41296/2020) from the Department of Biotechnology, Government of India and the Intramural Grant (IMSXC2023-24/003) awarded to Dr. Sayak Ganguli by St. Xavier's College (Autonomous) Kolkata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayak Ganguli .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they do not have any identifiable competing financial interests or personal relationships that could have potentially influenced the content of this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhopadhyay, S., Karmakar, R., Chakrabarti, S., Ghosh, M.M., Ganguli, S. (2024). Evaluating the Impact of Climate Change on Antimicrobial Resistance and Rise in Dysentery Using Next Generation Sequencing Based Approaches. In: Gupta, J., Verma, A. (eds) Microbiology-2.0 Update for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-99-9617-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9617-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9616-2

  • Online ISBN: 978-981-99-9617-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics