Skip to main content

Molecular Mechanisms in Drug Delivery

  • Chapter
  • First Online:
Microbiology-2.0 Update for a Sustainable Future

Abstract

Knowledge of molecular mechanisms (MM) has been attracted globally due to its potential application in the field of drug delivery. In the past decades, several MM methods were identified with an extensive range of excipients for the reason of poor solubility of drugs. The MM has been scrutinized with complex formulations where the drugs are encapsulated into responsive excipients so that the drug delivery process has to be improved. This review gives brief information on mechanisms used in drug delivery such as swelling, diffusion, and erosion. In swelling controlled; the drug molecules permeate due to the formation of a hydrogel matrix. Impacting parameters in swelling controlled are temperature pH, light, pressure, ionic strength, magnetic and electric field, etc. In diffusion-controlled; the drug is released via excipient disintegration/cracks/leakages without a change in size. While erosion-controlled materials erode in the form of monomers and oligomers from excipient on the surface or bulk. These mechanisms depend on drug dose, drug type, quantity and type of excipient, and environmental conditions at the time of drug delivery. It also depends on the geometry and dimension of the administration routes. On the whole, this piece of information is useful to researchers for developing the drug delivery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • N. Y. Abu-Thabit and A. S. H. Makhlouf, 1 - Historical Development of Drug Delivery Systems: From Conventional Macroscale to Controlled, Targeted, and Responsive Nanoscale Systems, in Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1, edited by A. S. H. Makhlouf and N. Y. Abu-Thabit (Woodhead Publishing, 2018), pp. 3–41.

    Google Scholar 

  • C. Alexiou, R. Tietze, E. Schreiber, R. Jurgons, H. Richter, L. Trahms, H. Rahn, S. Odenbach, and S. Lyer, Cancer Therapy with Drug Loaded Magnetic Nanoparticles—Magnetic Drug Targeting, J. Magn. Magn. Mater. 323, 1404 (2011).

    Google Scholar 

  • C. Alvarez-Lorenzo, L. Bromberg, and A. Concheiro, Light-Sensitive Intelligent Drug Delivery Systems†, Photochem. Photobiol. 85, 848 (2009).

    Google Scholar 

  • F. Assa, H. Jafarizadeh-Malmiri, H. Ajamein, H. Vaghari, N. Anarjan, O. Ahmadi, and A. Berenjian, Chitosan Magnetic Nanoparticles for Drug Delivery Systems, Crit. Rev. Biotechnol. 37, 492 (2017).

    Google Scholar 

  • Y. H. Bae and K. Park, Targeted Drug Delivery to Tumors: Myths, Reality and Possibility, J. Control. Release 153, 198 (2011).

    Google Scholar 

  • S. Bais, R. Kumari, Y. Prashar, and N. S. Gill, Review of Various Molecular Targets on Mast Cells and Its Relation to Obesity: A Future Perspective, Diabetes Metab. Syndr. Clin. Res. Rev. 11, S1001 (2017).

    Google Scholar 

  • D. J. Beltran-Villegas and A. Jayaraman, Assembly of Amphiphilic Block Copolymers and Nanoparticles in Solution: Coarse-Grained Molecular Simulation Study, J. Chem. Eng. Data 63, 2351 (2018).

    Google Scholar 

  • H. A. E. Benson and M. S. Roberts, Challenges and Innovations of Controlled Drug Delivery, in Fundamentals of Drug Delivery (John Wiley & Sons, Ltd, 2021), pp. 1–14.

    Google Scholar 

  • A. C. Berger and J. L. Whistler, How to Design an Opioid Drug That Causes Reduced Tolerance and Dependence, Ann. Neurol. 67, 559 (2010).

    Google Scholar 

  • R. Bettini, P. Colombo, G. Massimo, P. L. Catellani, and T. Vitali, Swelling and Drug Release in Hydrogel Matrices: Polymer Viscosity and Matrix Porosity Effects, Eur. J. Pharm. Sci. 2, 213 (1994).

    Google Scholar 

  • A. Bigham, S. A. Hassanzadeh-Tabrizi, M. Rafienia, and H. Salehi, Ordered Mesoporous Magnesium Silicate with Uniform Nanochannels as a Drug Delivery System: The Effect of Calcination Temperature on Drug Delivery Rate, Ceram. Int. 42, 17185 (2016).

    Google Scholar 

  • W. A. Birru, D. B. Warren, S. J. Headey, H. Benameur, C. J. H. Porter, C. W. Pouton, and D. K. Chalmers, Computational Models of the Gastrointestinal Environment. 1. The Effect of Digestion on the Phase Behavior of Intestinal Fluids, Mol. Pharm. 14, 566 (2017).

    Google Scholar 

  • W. A. Birru, D. B. Warren, S. Han, H. Benameur, C. J. H. Porter, C. W. Pouton, and D. K. Chalmers, Computational Models of the Gastrointestinal Environment. 2. Phase Behavior and Drug Solubilization Capacity of a Type I Lipid-Based Drug Formulation after Digestion, Mol. Pharm. 14, 580 (2017).

    Google Scholar 

  • J. S. Boateng, K. H. Matthews, H. N. E. Stevens, and G. M. Eccleston, Wound Healing Dressings and Drug Delivery Systems: A Review, J. Pharm. Sci. 97, 2892 (2008).

    Google Scholar 

  • D. Bodmer, T. Kissel, and E. Traechslin, Factors Influencing the Release of Peptides and Proteins from Biodegradable Parenteral Depot Systems, J. Control. Release 21, 129 (1992).

    Google Scholar 

  • P. Borgquist, A. Körner, L. Piculell, A. Larsson, and A. Axelsson, A Model for the Drug Release from a Polymer Matrix Tablet—Effects of Swelling and Dissolution, J. Control. Release 113, 216 (2006).

    Google Scholar 

  • G. Bruno, G. Canavese, X. Liu, C. S. Filgueira, A. Sacco, D. Demarchi, M. Ferrari, and A. Grattoni, The Active Modulation of Drug Release by an Ionic Field Effect Transistor for an Ultra-Low Power Implantable Nanofluidic System, Nanoscale 8, 18718 (2016).

    Google Scholar 

  • G. Chen, Y. Qian, H. Zhang, A. Ullah, X. He, Z. Zhou, H. Fenniri, and J. Shen, Advances in Cancer Theranostics Using Organic-Inorganic Hybrid Nanotechnology, Appl. Mater. Today 23, 101003 (2021).

    Google Scholar 

  • K. Chiotis et al., Dual Tracer Tau PET Imaging Reveals Different Molecular Targets for 11C-THK5351 and 11C-PBB3 in the Alzheimer Brain, Eur. J. Nucl. Med. Mol. Imaging 45, 1605 (2018).

    Google Scholar 

  • S. Chłopicki and R. J. Gryglewski, Angiotensin Coverting Enzyme (ACE) and HydroxyMethylGlutaryl-CoA (HMG-CoA) Reductase Inhibitors in the Forefront of Pharmacology of Endothelium, Pharmacol. Reports 57, 86 (2005).

    Google Scholar 

  • T.-C. Chou and P. Talalay, Quantitative Analysis of Dose-Effect Relationships: The Combined Effects of Multiple Drugs or Enzyme Inhibitors, Adv. Enzyme Regul. 22, 27 (1984).

    Google Scholar 

  • P. Colombo, R. Bettini, P. Santi, A. De Ascentiis, and N. A. Peppas, Analysis of the Swelling and Release Mechanisms from Drug Delivery Systems with Emphasis on Drug Solubility and Water Transport, J. Control. Release 39, 231 (1996).

    Google Scholar 

  • U. Conte, P. Colombo, A. Gazzaniga, M. E. Sangalli, and A. La Manna, Swelling-Activated Drug Delivery Systems, Biomaterials 9, 489 (1988).

    Google Scholar 

  • D. F. Costa, L. P. Mendes, and V. P. Torchilin, The Effect of Low- and High-Penetration Light on Localized Cancer Therapy, Adv. Drug Deliv. Rev. 138, 105 (2019).

    Google Scholar 

  • G. Deepa, K. C. Sivakumar, and T. P. Sajeevan, Molecular Simulation and in Vitro Evaluation of Chitosan Nanoparticles as Drug Delivery Systems for the Controlled Release of Anticancer Drug Cytarabine against Solid Tumours, 3 Biotech 8, 493 (2018).

    Google Scholar 

  • L. Dong and A. S. Hoffman, A Novel Approach for Preparation of PH-Sensitive Hydrogels for Enteric Drug Delivery, J. Control. Release 15, 141 (1991).

    Google Scholar 

  • M. Efentakis and S. Politis, Comparative Evaluation of Various Structures in Polymer Controlled Drug Delivery Systems and the Effect of Their Morphology and Characteristics on Drug Release, Eur. Polym. J. 42, 1183 (2006).

    Google Scholar 

  • X. Fu, L. Hosta-Rigau, R. Chandrawati, and J. Cui, Multi-Stimuli-Responsive Polymer Particles, Films, and Hydrogels for Drug Delivery, Chem 4, 2084 (2018).

    Google Scholar 

  • P. Gao, J. W. Skoug, P. R. Nixon, T. Robert Ju, N. L. Stemm, and K.-C. Sung, Swelling of Hydroxypropyl Methylcellulose Matrix Tablets. 2. Mechanistic Study of the Influence of Formulation Variables on Matrix Performance and Drug Release, J. Pharm. Sci. 85, 732 (1996).

    Google Scholar 

  • E. Gianni, K. Avgoustakis, M. Pšenička, M. Pospíšil, and D. Papoulis, Halloysite Nanotubes as Carriers for Irinotecan: Synthesis and Characterization by Experimental and Molecular Simulation Methods, J. Drug Deliv. Sci. Technol. 52, 568 (2019).

    Google Scholar 

  • A. Göpferich and R. Langer, The Influence of Microstructure and Monomer Properties on the Erosion Mechanism of a Class of Polyanhydrides, J. Polym. Sci. Part A Polym. Chem. 31, 2445 (1993).

    Google Scholar 

  • A. Göpferich, Mechanisms of Polymer Degradation and Erosion, in The Biomaterials: Silver Jubilee Compendium, edited by D. F. Williams (Elsevier Science, Oxford, 1996), pp. 117–128.

    Google Scholar 

  • J. Hao, J. Zhao, S. Zhang, T. Tong, Q. Zhuang, K. Jin, W. Chen, and H. Tang, Fabrication of an Ionic-Sensitive in Situ Gel Loaded with Resveratrol Nanosuspensions Intended for Direct Nose-to-Brain Delivery, Colloids Surfaces B Biointerfaces 147, 376 (2016).

    Google Scholar 

  • R. S. Harland, A. Gazzaniga, M. E. Sangalli, P. Colombo, and N. A. Peppas, Drug/Polymer Matrix Swelling and Dissolution, Pharm. Res. 5, 488 (1988).

    Google Scholar 

  • H. He, X. Cao, and L. J. Lee, Design of a Novel Hydrogel-Based Intelligent System for Controlled Drug Release, J. Control. Release 95, 391 (2004).

    Google Scholar 

  • Q. He, Y. Gao, L. Zhang, Z. Zhang, F. Gao, X. Ji, Y. Li, and J. Shi, A PH-Responsive Mesoporous Silica Nanoparticles-Based Multi-Drug Delivery System for Overcoming Multi-Drug Resistance, Biomaterials 32, 7711 (2011).

    Google Scholar 

  • R. A. Hegab, S. Pardue, X. Shen, C. Kevil, N. A. Peppas, and M. E. Caldorera-Moore, Effect of Network Mesh Size and Swelling to the Drug Delivery from PH Responsive Hydrogels, J. Appl. Polym. Sci. 137, 48767 (2020).

    Google Scholar 

  • Y. Hou, X. Yang, R. Liu, D. Zhao, C. Guo, A. Zhu, M. Wen, Z. Liu, G. Qu, and H. Meng, Pathological Mechanism of Photodynamic Therapy and Photothermal Therapy Based on Nanoparticles, Int. J. Nanomedicine 15, 6827 (2020).

    Google Scholar 

  • E. Ilhan-Ayisigi and O. Yesil-Celiktas, Silica-Based Organic-Inorganic Hybrid Nanoparticles and Nanoconjugates for Improved Anticancer Drug Delivery, Eng. Life Sci. 18, 882 (2018).

    Google Scholar 

  • P. K. Jha, P. S. Desai, J. Li, and R. G. Larson, PH and Salt Effects on the Associative Phase Separation of Oppositely Charged Polyelectrolytes, Polymers (Basel). 6, 1414 (2014).

    Google Scholar 

  • S. C. Joshi, Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release, Materials (Basel). 4, 1861 (2011).

    Google Scholar 

  • R. Jurgens, C. Seliger, A. Hilpert, L. Trahms, S. Odenbach, and C. Alexiou, Drug Loaded Magnetic Nanoparticles for Cancer Therapy, J. Phys. Condens. Matter 18, S2893 (2006).

    Google Scholar 

  • M. Kanamala, W. R. Wilson, M. Yang, B. D. Palmer, and Z. Wu, Mechanisms and Biomaterials in PH-Responsive Tumour Targeted Drug Delivery: A Review, Biomaterials 85, 152 (2016).

    Google Scholar 

  • R. S. Katiyar and P. K. Jha, Phase Behavior of Aqueous Polyacrylic Acid Solutions Using Atomistic Molecular Dynamics Simulations of Model Oligomers, Polymer (Guildf). 114, 266 (2017).

    Google Scholar 

  • R. S. Katiyar and P. K. Jha, Molecular Insights into the Effects of Media–Drug and Carrier–Drug Interactions on PH-Responsive Drug Carriers, Mol. Pharm. 15, 2479 (2018).

    Google Scholar 

  • S. Kiil and K. Dam-Johansen, Controlled Drug Delivery from Swellable Hydroxypropylmethylcellulose Matrices: Model-Based Analysis of Observed Radial Front Movements, J. Control. Release 90, 1 (2003).

    Google Scholar 

  • J. A. Kimber, S. G. Kazarian, and F. Štěpánek, DEM Simulation of Drug Release from Structurally Heterogeneous Swelling Tablets, Powder Technol. 248, 68 (2013).

    Google Scholar 

  • G. Kocak, C. Tuncer, and V. Bütün, PH-Responsive Polymers, Polym. Chem. 8, 144 (2017).

    Google Scholar 

  • R. S. Langer and N. A. Peppas, Present and Future Applications of Biomaterials in Controlled Drug Delivery Systems, Biomaterials 2, 201 (1981).

    Google Scholar 

  • E. Larrañeta, T. Raghu Raj Singh, and R. F. Donnelly, 1 - Overview of the Clinical Current Needs and Potential Applications for Long-Acting and Implantable Delivery Systems, in Long-Acting Drug Delivery Systems, edited by E. Larrañeta, T. Raghu Raj Singh, and R. F. Donnelly (Woodhead Publishing, 2022), pp. 1–16.

    Google Scholar 

  • M. Levina and A. R. Rajabi‐Siahboomi, The Influence of Excipients on Drug Release from Hydroxypropyl Methylcellulose Matrices, J. Pharm. Sci. 93, 2746 (2004).

    Google Scholar 

  • M. Li, Z. Luo, and Y. Zhao, Hybrid Nanoparticles as Drug Carriers for Controlled Chemotherapy of Cancer, Chem. Rec. 16, 1833 (2016).

    Google Scholar 

  • J. Li, J. Zeng, X. Jia, L. Liu, T. Zhou, and P. Liu, PH, Temperature and Reduction Multi-Responsive Polymeric Microspheres as Drug Delivery System for Anti-Tumor Drug: Effect of Middle Hollow Layer between PH and Reduction Dual-Responsive Cores and Temperature Sensitive Shells, J. Taiwan Inst. Chem. Eng. 74, 238 (2017).

    Google Scholar 

  • W. Löscher and D. Schmidt, Experimental and Clinical Evidence for Loss of Effect (Tolerance) during Prolonged Treatment with Antiepileptic Drugs, Epilepsia 47, 1253 (2006).

    Google Scholar 

  • S. B. Mahamat Nor, P. M. Woi, and S. H. Ng, Characterisation of Ionic Liquids Nanoemulsion Loaded with Piroxicam for Drug Delivery System, J. Mol. Liq. 234, 30 (2017).

    Google Scholar 

  • M. Mahdavi, F. Rahmani, and S. Nouranian, Molecular Simulation of PH-Dependent Diffusion{,} Loading{,} and Release of Doxorubicin in Graphene and Graphene Oxide Drug Delivery Systems, J. Mater. Chem. B 4, 7441 (2016).

    Google Scholar 

  • D. T. Manallack, M. L. Dennis, M. R. Kelly, R. J. Prankerd, E. Yuriev, and D. K. Chalmers, The Acid/Base Profile of the Human Metabolome and Natural Products, Mol. Inform. 32, 505 (2013).

    Google Scholar 

  • P. Marizza et al., Supercritical Impregnation of Polymer Matrices Spatially Confined in Microcontainers for Oral Drug Delivery: Effect of Temperature, Pressure and Time, J. Supercrit. Fluids 107, 145 (2016).

    Google Scholar 

  • J. S. Mitcheson, Jules C Hancox, A. J. Levi, Cultured Adult Cardiac Myocytes: Future Applications, Culture Methods, Morphological and Electrophysiological Properties, Cardiovasc. Res. 39, 208 (1998).

    Google Scholar 

  • W. R. Miller, J. L. Sorensen, J. A. Selzer, and G. S. Brigham, Disseminating Evidence-Based Practices in Substance Abuse Treatment: A Review with Suggestions, J. Subst. Abuse Treat. 31, 25 (2006).

    Google Scholar 

  • V. V Mody, A. Cox, S. Shah, A. Singh, W. Bevins, and H. Parihar, Magnetic Nanoparticle Drug Delivery Systems for Targeting Tumor, Appl. Nanosci. 4, 385 (2014).

    Google Scholar 

  • Y. Mu, L. Gong, T. Peng, J. Yao, and Z. Lin, Advances in PH-Responsive Drug Delivery Systems, OpenNano 5, 100031 (2021).

    Google Scholar 

  • S. Mura, J. Nicolas, and P. Couvreur, Stimuli-Responsive Nanocarriers for Drug Delivery, Nat. Mater. 12, 991 (2013).

    Google Scholar 

  • S. Muro, Challenges in Design and Characterization of Ligand-Targeted Drug Delivery Systems, J. Control. Release 164, 125 (2012).

    Google Scholar 

  • K. Nakamura, E. Nara, and Y. Akiyama, Development of an Oral Sustained Release Drug Delivery System Utilizing PH-Dependent Swelling of Carboxyvinyl Polymer, J. Control. Release 111, 309 (2006).

    Google Scholar 

  • F. Nazir, T. A. Tabish, F. Tariq, S. Iftikhar, R. Wasim, and G. Shahnaz, Stimuli-Sensitive Drug Delivery Systems for Site-Specific Antibiotic Release, Drug Discov. Today 27, 1698 (2022).

    Google Scholar 

  • H. Omidian and K. Park, Swelling Agents and Devices in Oral Drug Delivery, J. Drug Deliv. Sci. Technol. 18, 83 (2008).

    Google Scholar 

  • P. Pan, D. Svirskis, S. W. P. Rees, D. Barker, G. I. N. Waterhouse, and Z. Wu, Photosensitive Drug Delivery Systems for Cancer Therapy: Mechanisms and Applications, J. Control. Release 338, 446 (2021).

    Google Scholar 

  • T. G. Park, Degradation of Poly(d,l-Lactic Acid) Microspheres: Effect of Molecular Weight, J. Control. Release 30, 161 (1994).

    Google Scholar 

  • K. K. Peh and C. F. Wong, Polymeric Films as Vehicle for Buccal Delivery: Swelling, Mechanical, and Bioadhesive Properties., J. Pharm. Pharm. Sci. 2, 53 (1999).

    Google Scholar 

  • N. A. Peppas, Hydrogels and Drug Delivery, Curr. Opin. Colloid Interface Sci. 2, 531 (1997).

    Google Scholar 

  • S. Perkins, A. Evans, and A. King, Updated List of Light-Sensitive Oral Medications, Hosp. Pharm. 55, 349 (2020).

    Google Scholar 

  • O. Pillai and R. Panchagnula, Polymers in Drug Delivery, Curr. Opin. Chem. Biol. 5, 447 (2001).

    Google Scholar 

  • V. Pillay, T.-S. Tsai, Y. E. Choonara, L. C. du Toit, P. Kumar, G. Modi, D. Naidoo, L. K. Tomar, C. Tyagi, and V. M. K. Ndesendo, A Review of Integrating Electroactive Polymers as Responsive Systems for Specialized Drug Delivery Applications, J. Biomed. Mater. Res. Part A 102, 2039 (2014).

    Google Scholar 

  • H. Rabbel, P. Breier, and J.-U. Sommer, Swelling Behavior of Single-Chain Polymer Nanoparticles: Theory and Simulation, Macromolecules 50, 7410 (2017).

    Google Scholar 

  • V. V Ranade, Drug Delivery Systems. 6. Transdermal Drug Delivery, J. Clin. Pharmacol. 31, 401 (1991).

    Google Scholar 

  • M.-R. Rodríguez-Hidalgo, C. Soto-Figueroa, and L. Vicente, Mesoscopic Simulation of the Drug Release Mechanism on the Polymeric Vehicle P(ST-DVB) in an Acid Environment, Soft Matter 7, 8224 (2011).

    Google Scholar 

  • C. K. Sackett and B. Narasimhan, Mathematical Modeling of Polymer Erosion: Consequences for Drug Delivery, Int. J. Pharm. 418, 104 (2011).

    Google Scholar 

  • S. Salunke, F. O’Brien, D. Cheng Thiam Tan, D. Harris, M.-C. Math, T. Ariën, S. Klein, and C. Timpe, Oral Drug Delivery Strategies for Development of Poorly Water Soluble Drugs in Paediatric Patient Population, Adv. Drug Deliv. Rev. 190, 114507 (2022).

    Google Scholar 

  • N. V Sastry, D. K. Singh, and P. A. Trivedi, Hybrid Hydrogel Systems of Micelles of Drug Anion Containing Ionic Liquid and Biopolymers: Rheological Behavior and Drug Release, Colloids Surfaces A Physicochem. Eng. Asp. 555, 668 (2018).

    Google Scholar 

  • D. Schmaljohann, Thermo- and PH-Responsive Polymers in Drug Delivery, Adv. Drug Deliv. Rev. 58, 1655 (2006).

    Google Scholar 

  • R. Sebastian, T. Guillerm, F. Tjulkins, Y. Hu, A. J. P. Clover, A. Lyness, and C. O’Mahony, A Comparison of Flow- and Pressure-Controlled Infusion Strategies for Microneedle-Based Transdermal Drug Delivery, in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (2022), pp. 2573–2576.

    Google Scholar 

  • J. Seggie, C. Canny, F. Mai, E. McCrank, and E. Waring, Antidepressant Medication Reverses Increased Sensitivity to Light in Depression: Preliminary Report, Prog. Neuro-Psychopharmacology & Biol. Psychiatry 13, 537–541 (1989).

    Google Scholar 

  • Y. Shen, X. Ma, B. Zhang, Z. Zhou, Q. Sun, E. Jin, M. Sui, J. Tang, J. Wang, and M. Fan, Degradable Dual PH- and Temperature-Responsive Photoluminescent Dendrimers, Chem. – A Eur. J. 17, 5319 (2011).

    Google Scholar 

  • J. Siepmann and F. Siepmann, Modeling of Diffusion Controlled Drug Delivery, J. Control. Release 161, 351 (2012).

    Google Scholar 

  • J. Siepmann, K. Podual, M. Sriwongjanya, N. A. Peppas, and R. Bodmeier, A New Model Describing the Swelling and Drug Release Kinetics from Hydroxypropyl Methylcellulose Tablets, J. Pharm. Sci. 88, 65 (1999).

    Google Scholar 

  • J. Siepmann, F. Lecomte, and R. Bodmeier, Diffusion-Controlled Drug Delivery Systems: Calculation of the Required Composition to Achieve Desired Release Profiles, J. Control. Release 60, 379 (1999).

    Google Scholar 

  • J. Siepmann, R. A. Siegel, and F. Siepmann, Diffusion Controlled Drug Delivery Systems, in Fundamentals and Applications of Controlled Release Drug Delivery, edited by J. Siepmann, R. A. Siegel, and M. J. Rathbone (Springer US, Boston, MA, 2012), pp. 127–152.

    Google Scholar 

  • J. Supramaniam, R. Adnan, N. H. Mohd Kaus, and R. Bushra, Magnetic Nanocellulose Alginate Hydrogel Beads as Potential Drug Delivery System, Int. J. Biol. Macromol. 118, 640 (2018).

    Google Scholar 

  • I. Tomic, A. Vidis-Millward, M. Mueller-Zsigmondy, and J.-M. Cardot, Setting Accelerated Dissolution Test for PLGA Microspheres Containing Peptide, Investigation of Critical Parameters Affecting Drug Release Rate and Mechanism, Int. J. Pharm. 505, 42 (2016).

    Google Scholar 

  • H. Tozaki, J. Komoike, C. Tada, T. Maruyama, A. Terabe, T. Suzuki, A. Yamamoto, and S. Muranishi, Chitosan Capsules for Colon-Specific Drug Delivery: Improvement of Insulin Absorption from the Rat Colon, J. Pharm. Sci. 86, 1016 (1997).

    Google Scholar 

  • L. L. Tundisi, G. B. Mostaço, P. C. Carricondo, and D. F. S. Petri, Hydroxypropyl Methylcellulose: Physicochemical Properties and Ocular Drug Delivery Formulations, Eur. J. Pharm. Sci. 159, 105736 (2021).

    Google Scholar 

  • A. M. Vargason, A. C. Anselmo, and S. Mitragotri, The Evolution of Commercial Drug Delivery Technologies, Nat. Biomed. Eng. 5, 951 (2021).

    Google Scholar 

  • M. Varmazyar, M. Habibi, M. Amini, A. H. Pordanjani, M. Afrand, and S. M. Vahedi, Numerical Simulation of Magnetic Nanoparticle-Based Drug Delivery in Presence of Atherosclerotic Plaques and under the Effects of Magnetic Field, Powder Technol. 366, 164 (2020).

    Google Scholar 

  • E. R. Viscusi, Improving the Therapeutic Window of Conventional Opioids: Novel Differential Signaling Modulators, Reg. Anesth. Pain Med. 44, 32 (2019).

    Google Scholar 

  • C. Viseras, P. Cerezo, R. Sanchez, I. Salcedo, and C. Aguzzi, Current Challenges in Clay Minerals for Drug Delivery, Appl. Clay Sci. 48, 291 (2010).

    Google Scholar 

  • J. Wang, J. Qiu, and S. Wang, 3D Core-Shell Simulation of Hydrogel Swelling Behavior for Controlled Drug Delivery, vol. 56222 (2013), p. V03BT03A027.

    Google Scholar 

  • J. W. Winkelman and L. Johnston, Augmentation and Tolerance with Long-Term Pramipexole Treatment of Restless Legs Syndrome (RLS), Sleep Med. 5, 9 (2004).

    Google Scholar 

  • M. Wittmann and P. S. Helliwell, Phosphodiesterase 4 Inhibition in the Treatment of Psoriasis, Psoriatic Arthritis and Other Chronic Inflammatory Diseases, Dermatol. Ther. (Heidelb). 3, 1 (2013).

    Google Scholar 

  • C. Wu, PH Response of Conformation of Poly(Propylene Imine) Dendrimer in Water: A Molecular Simulation Study, Mol. Simul. 36, 1164 (2010).

    Google Scholar 

  • Z. Yang, S. Sotthivirat, Y. Wu, A. Lalloo, B. Nissley, K. Manser, and H. Li, Application of in Vitro Transmucosal Permeability, Dose Number, and Maximum Absorbable Dose for Biopharmaceutics Assessment during Early Drug Development for Intraoral Delivery, Int. J. Pharm. 503, 78 (2016).

    Google Scholar 

  • D. Yang, J. S. Lee, C.-K. Choi, H.-P. Lee, S.-W. Cho, and W. Ryu, Microchannel System for Rate-Controlled, Sequential, and PH-Responsive Drug Delivery, Acta Biomater. 68, 249 (2018).

    Google Scholar 

  • D.-W. Yin, F. Horkay, J. F. Douglas, and J. J. de Pablo, Molecular Simulation of the Swelling of Polyelectrolyte Gels by Monovalent and Divalent Counterions, J. Chem. Phys. 129, 154902 (2008).

    Google Scholar 

  • T. Yuan, W. Zhan, A. Jamal, and D. Dini, On the Microstructurally Driven Heterogeneous Response of Brain White Matter to Drug Infusion Pressure, Biomech. Model. Mechanobiol. 21, 1299 (2022).

    Google Scholar 

  • S. Zhang, C. Liu, D. Yang, J. Ruan, Z. Luo, P. Quan, and L. Fang, Mechanism Insight on Drug Skin Delivery from Polyurethane Hydrogels: Roles of Molecular Mobility and Intermolecular Interaction, Eur. J. Pharm. Sci. 161, 105783 (2021).

    Google Scholar 

  • Z. Zhao, A. Ukidve, J. Kim, and S. Mitragotri, Targeting Strategies for Tissue-Specific Drug Delivery, Cell 181, 151 (2020).

    Google Scholar 

  • S. Zuleger and B. C. Lippold, Polymer Particle Erosion Controlling Drug Release. I. Factors Influencing Drug Release and Characterization of the Release Mechanism, Int. J. Pharm. 217, 139 (2001).

    Google Scholar 

Download references

Acknowledgment

This work is supported by a university research grant from MGM University, Chhatrapati Sambhajinagar, India (no. MGMU003/23-24/RO/R&D/246/24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna S. Katiyar .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

“There are no conflicts of interest to declare by the authors.”

Ethical Approval

The authors hereby state that the present work is in compliance with the ethical standards.

Competing Interests

The authors declare no competing interests.

Availability of Data and Materials

Not applicable.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gite, V.A., Verma, R.K., Katiyar, R.S. (2024). Molecular Mechanisms in Drug Delivery. In: Gupta, J., Verma, A. (eds) Microbiology-2.0 Update for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-99-9617-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9617-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9616-2

  • Online ISBN: 978-981-99-9617-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics