Skip to main content

AI Application in Achieving Sustainable Development Goal Targeting Good Health and Well-Being: A New Holistic Paradigm

  • Conference paper
  • First Online:
Control and Information Sciences (CISCON 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1140))

Included in the following conference series:

  • 14 Accesses

Abstract

Artificial intelligence is a field of engineering, science, and technology mainly based on computational comprehension with the creation of artifacts for better diagnosis, detection, and treatment of medical emergencies. Such computing advances in past decades catalyzed the integration of digitalized techniques with medicine along with clinical nutrition and mental health. Several AI-based devices and prediction models provide clinical help to various self-management tools. AI application in the healthcare sector targets good health management and well-being of individuals. Such technologies can perform healthcare tasks with better patient engagement and adherence. Still, it is crucial to validate such computational tools with a traditional clinical trial. These AI systems thus should be initially approved and standardized as well as provision of updating should be there.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UN General Assembly (UNGA) (2015) A/RES/70/1. Transforming our world: the 2030 agenda for sustainable development. Result 25:1–35

    Google Scholar 

  2. Fuso Nerini F, Tomei J, To LS, Bisaga I, Parikh P, Black M, Borrion A, Spataru C, CastanBroto V, Anandarajah G, Milligan B (2017) Mapping synergies and trade-offs between energy and the sustainable development goals. Nat Energy 3:10–15. https://doi.org/10.1038/s41560-017-0036-5

    Article  Google Scholar 

  3. Fuso Nerini F, Sovacool B, Hughes N, Cozzi L, Cosgrave E, Howells M, Tavoni M, Tomei J, Zerriffi H, Milligan B (2019) Connecting climate action with other sustainable development goals. Nat Sustain 1:674–680. https://doi.org/10.1038/s41893-019-0334-y

    Article  Google Scholar 

  4. Fuso Nerini F (2018) Use SDGs to guide climate action. Nature 557:2018. https://doi.org/10.1038/d41586-018-05007-1

    Article  Google Scholar 

  5. Tagliaferri SD, Angelova M, Zhao X, Owen PJ, Miller CT, Wilkin T et al (2020) Artificial intelligence to improve back pain outcomes and lessons learnt from clinical classification approaches: three systematic reviews. NPJ Digit Med 3(1):1–16

    Article  Google Scholar 

  6. Tran BX, Vu GT, Ha GH, Vuong Q-H, Ho M-T, Vuong T-T et al (2019) Global evolution of research in artificial intelligence in health and medicine: a bibliometric study. J Clin Med 8(3):360

    Article  Google Scholar 

  7. Yang X, Wang Y, Byrne R, Schneider G, Yang S (2019) Concepts of artificial intelligence for computer-assisted drug discovery | chemical reviews. Chem Rev 119(18):10520–10594

    Article  Google Scholar 

  8. Burton RJ, Albur M, Eberl M, Cuf SM (2019) Using artificial intelligence to reduce diagnostic workload without compromising the detection of urinary tract infections. BMC Med Inform DecisMak 19(1):171

    Article  Google Scholar 

  9. Murali N, Sivakumaran N (2018) Artificial intelligence in healthcare: a review. Int J Mod Comput Inform Commun Technol 6:103–110

    Google Scholar 

  10. Ranganath R, Gerrish S, Blei DM (2014) Black box variational inference. Aistats 33:814–822

    Google Scholar 

  11. Spector L (2006) Evolution of artificial intelligence. Artif Intell 170:1251–1253

    Article  Google Scholar 

  12. Fogel AL, Kvedar JC (2018) Artificial intelligence powers digital medicine. NPJ Digit Med 1:5

    Article  Google Scholar 

  13. Ranganath R et al (2014) Black box variational inference. Aistats. 33:814–822

    Google Scholar 

  14. Sensmeier J (2017) Harnessing the power of artificial intelligence. Nurs Manag 48:14–19

    Article  Google Scholar 

  15. Hockstein NG, Gourin CG, Faust RA, Terris DJ (2007) A history of robots: from science fiction to surgical robotics. J Robot Surg 1:113–118

    Article  Google Scholar 

  16. Mesko B (2017) The role of artificial intelligence in precision medicine. Expert Rev Precis Med Drug Dev 2:239–241

    Article  Google Scholar 

  17. Lieberman H, Mason C (2002) Intelligent agent software for medicine. Stud Health Technol Inform. 8:99–109

    Google Scholar 

  18. CIFNIFB (2013) Digitalhealthcar, p 91643080

    Google Scholar 

  19. Imison C, Castle-clarke S, Watson R, Edwards N (2016) Delivering the benefits of digital health care. Nuffield Trust 32:1–108

    Google Scholar 

  20. Svetlana I, Zorica D, Jelena P, Jelena P (2009) Artificial intelligence in pharmaceutical product formulation: neural computing. Chem Ind Chem Eng Quart 15:227–236

    Article  Google Scholar 

  21. Shulman C (2012) How hard is artificial intelligence? Evolutionary arguments and selection effects. J Consc Stud 19:1–23

    Google Scholar 

  22. Wukkadada B, Saiswani VP (2000) Online healthcare system using cloud computing and artificial intelligence. IOSR J Comput Eng 20:S40–S43

    Google Scholar 

  23. Mohammadzadeh N, Safdari R (2012) Artificial intelligence tools in health information management. Int J Hosp Res 1:71–76

    Google Scholar 

  24. Deloitte Insights (2018) State of AI in the enterprise. Deloitte

    Google Scholar 

  25. Lee SI, Celik S, Logsdon BA et al (2018) A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun 9:42

    Article  Google Scholar 

  26. Sordo M (2002) Introduction to neural networks in healthcare. Open Clinical. www.openclinical.org/docs/int/neuralnetworks011.pdf

  27. Vial A, Stirling D, Field M et al (2018) The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. Transl Cancer Res 7:803–816

    Article  Google Scholar 

  28. Thomas Davenport A et al (2019) The potential for artificial intelligence in healthcare. Fut Health Care J 6(2):94–98

    Article  Google Scholar 

  29. Vial A, Stirling D, Field M et al (2018) The role of deep learning and radiomic feature extraction in cancer-specific predictive modeling: a review. Transl Cancer Res 7:803–816

    Article  Google Scholar 

  30. Davenport TH, Glaser J (2002) Just-in-time delivery comes to knowledge management. Harvard Business Review. https://hbr.org/2002/07/justin-time-delivery-comes-to-knowledge-management

  31. Hussain A, Malik A et al (2014) The use of robotics in surgery: a review. Int J ClinPract 68:1376–1382

    Google Scholar 

  32. Ramaswami R et al (2018) Precision medicine from a public health perspective. Annu Rev Public Health 39:153–168

    Article  Google Scholar 

  33. Murugan S et al (2020) Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med 18:472. https://doi.org/10.1186/s12967-020-02658-5

    Article  Google Scholar 

  34. Wiemken TL et al (2020) Machine learning in epidemiology and health outcomes research. Annu Rev Public Health 41:21–36

    Article  Google Scholar 

  35. Mendes-Soares H et al (2012) Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes. JAMA Netw Open 32:e188102

    Google Scholar 

  36. Abràmof MD et al (2018) Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 1:39

    Article  Google Scholar 

  37. Nimri R, Battelino T, Lafel LM et al (2020) Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat Med 26:1380–1384

    Article  Google Scholar 

  38. Nomura A et al (2021) Artificial intelligence in current diabetes management and prediction. Curr Diab Rep 21:61. https://doi.org/10.1007/s11892-021-01423-2

    Article  Google Scholar 

  39. Madani A et al (2018) Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med 1:1–8

    Article  Google Scholar 

  40. Kirk D et al (2021) Precision nutrition: a systematic literature review. Comput Biol Med 133:104365. https://doi.org/10.1016/j.compbiomed.2021.104365

    Article  Google Scholar 

  41. de Toro-Martín J et al (2017) Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients 9(8):913. https://doi.org/10.3390/nu9080913.MDPIAG

    Article  Google Scholar 

  42. Bashiardes S et al (2018) Towards utilization of the human genome and microbiome for personalized nutrition. Curr Opin Biotechnol 51:57–63. https://doi.org/10.1016/j.copbio.2017.11.013

    Article  Google Scholar 

  43. Goni L et al (2016) Future perspectives of personalized weight loss interventions based on nutrigenetic, epigenetic, and metagenomic data. J Nutr 146(4):905S-912S. https://doi.org/10.3945/jn.115.218354

    Article  Google Scholar 

  44. Mattar R et al (2012) Lactose intolerance: diagnosis, genetic, and clinical factors. Clin Exp Gastroenterol 5(1):113–121

    Article  Google Scholar 

  45. Perez-Martinez P et al (2012) Metabolic syndrome: pieces of evidence for personalized nutrition. Mol Nutr Food Res 56(1):67–76

    Article  Google Scholar 

  46. Zeisel SH (2020) Precision (personalized) nutrition: understanding metabolic heterogeneity. Ann Rev Food Sci Technol 11(1):71–92. https://doi.org/10.1146/annurev-food-032519-051736

    Article  MathSciNet  Google Scholar 

  47. Wang DD, Hu FB (2018) Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabet Endocrinol 6:416–426. https://doi.org/10.1016/S2213-8587(18)30037-8

    Article  Google Scholar 

  48. Goni L, Cuervo M, Milagro FI, Martínez JA (2015) A genetic risk tool for obesity predisposition assessment and personalized nutrition implementation based on macronutrient intake. Genes Nutr 10:1–10

    Article  Google Scholar 

  49. Rukh G et al (2013) Genetic susceptibility to obesity and diet intakes: association and interaction analyses in the Malmö Diet and Cancer Study. Genes Nutr 8:535–547

    Article  Google Scholar 

  50. Toro-Martín J et al (2017) Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients 9:91. https://doi.org/10.3390/nu9080913

    Article  Google Scholar 

  51. Mental Health Crisis Could Cost the World $16 Trillion by 2030|Reuters (2022). https://www.reuters.com/article/us-health-mental-global-idUSKCN1MJ2QN

  52. World Mental Health Day (2022) An opportunity to kick-start a massive scale-up in investment in mental health. https://www.who.int/news/item/27-08-2020-world-mental-health-day-an-opportunity-to-kick-start-a-massive-scale-up-in-investment-in-mental-health. Accessed 9 July 2022

  53. Lee EE et al (2021) Artificial intelligence for mental health care: clinical applications, barriers, facilitators, and artificial wisdom. Biol Psych Cognit Neurosci Neuroimag 6(9):856–864. https://doi.org/10.1016/j.bpsc.2021.02.001

    Article  Google Scholar 

  54. Ritchie H (2022) Global mental health: five key insights which emerge from the data. Our World in Data. https://ourworldindata.org/global-mental-health. Accessed 9 July 2022

  55. Johnson M et al (2021) Digital transformation to mitigate emergency situations: increasing opioid overdose survival rates through explainable artificial intelligence. Ind Manag Data Syst 123:324–344. https://doi.org/10.1108/IMDS-04-2021-0248

    Article  Google Scholar 

  56. Khanal P et al (2020) Mental health impacts among health workers during COVID-19 in a low resource setting: a cross-sectional survey from Nepal. Global Health 16(1):89. https://doi.org/10.1186/s12992-020-00621-z

    Article  Google Scholar 

  57. Docrat S et al (2019) Mental health system costs, resources and constraints in South Africa: a national survey. Health Policy Plan 34(9):706–719. https://doi.org/10.1093/heapol/czz085

    Article  Google Scholar 

  58. Petersen I, Bhana A, Fairall LR, Selohilwe O, Kathree T, Baron EC et al (2019) Evaluation of a collaborative care model for integrated primary care of common mental disorders comorbid with chronic conditions in South Africa. BMC Psych 19(1):1–11

    Google Scholar 

  59. Wainberg ML et al (2017) Challenges and opportunities in global mental health: a research-to-practice perspective. Curr Psych Rep 19(5):28. https://doi.org/10.1007/s11920-017-0780-z

    Article  Google Scholar 

  60. Wang WM, Cheung CF (2011) A narrative-based reasoning with applications in decision support for social service organizations. Exp Syst Appl 38(4):3336–3345. https://doi.org/10.1016/j.eswa.2010.08.118

    Article  Google Scholar 

  61. Janssen RJ et al (2018) Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol Psych Cognit Neurosci Neuroimag 3(9):798–808. https://doi.org/10.1016/j.bpsc.2018.04.004

    Article  Google Scholar 

  62. Luxton DD (2014) Artificial intelligence in psychological practice: current and future applications and implications. Profess Psychol Res Pract 45(5):332–339. https://doi.org/10.1037/a0034559

    Article  Google Scholar 

  63. Mohr DC et al (2017) Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu Rev Clin Psychol 13:23–47. https://doi.org/10.1146/annurev-clinpsy-032816-044949

    Article  Google Scholar 

  64. Shatte ABR et al (2019) Machine learning in mental health: a scoping review of methods and applications. Psychol Med 49(9):1426–1448. https://doi.org/10.1017/S0033291719000151

    Article  Google Scholar 

  65. Topol E (2019) Deep medicine: how artificial intelligence can make healthcare human again. Hachette UK

    Google Scholar 

  66. Doraiswamy PM et al (2020) Artificial intelligence and the future of psychiatry: insights from a global physician survey. Artif Intell Med 102:101753. https://doi.org/10.1016/j.artmed.2019.101753

    Article  Google Scholar 

  67. Bzdok D, Meyer-Lindenberg A (2018) Machine learning for precision psychiatry: opportunities and challenges. Biol Psych Cognit Neurosci Neuroimag 3(3):223–230. https://doi.org/10.1016/j.bpsc.2017.11.007

    Article  Google Scholar 

  68. Braun U et al (2018) From maps to multi-dimensional network mechanisms of mental disorders. Neuron 97(1):14–31. https://doi.org/10.1016/j.neuron.2017.11.007

    Article  Google Scholar 

  69. Insel TR, Cuthbert BN (2015) Brain disorders? Precisely. Science 348(6234):499–500. https://doi.org/10.1126/science.aab2358

    Article  Google Scholar 

  70. Su C et al (2020) Deep learning in mental health outcome research: a scoping review. Transl Psych 10(1):1–26. https://doi.org/10.1038/s41398-020-0780-3

    Article  MathSciNet  Google Scholar 

  71. Zhou S et al (2022) Application of artificial intelligence on psychological interventions and diagnosis: an overview. Front Psych 13:811665. https://doi.org/10.3389/fpsyt.2022.811665

    Article  Google Scholar 

  72. Savery R, Weinberg G (2020) A survey of robotics and emotion: classifications and models of emotional interaction. In: Proceedings of the 2020 29th IEEE international conference on robot and human interactive communication (RO-MAN), pp 986–993. IEEE Xplore. https://doi.org/10.1109/RO-MAN47096.2020.9223536

  73. Fakhoury M (2019) Artificial intelligence in psychiatry. In: Kim Y-K (ed) Frontiers in psychiatry: artificial intelligence, precision medicine, and other paradigm shifts. Springer, New York, pp 119–125

    Chapter  Google Scholar 

  74. Lovejoy CA (2019) Technology and mental health: the role of artificial intelligence. Eur Psych 55:1–3. https://doi.org/10.1016/j.eurpsy.2018.08.004

    Article  Google Scholar 

  75. Landauer TK, Dumais ST (1997) A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol Rev 104(2):211–240. https://doi.org/10.1037/0033-295X.104.2.211

    Article  Google Scholar 

  76. Elvevåg B et al (2010) An automated method to analyze language use in patients with schizophrenia and their first-degree relatives. J Neuro Linguist 23(3):270–284. https://doi.org/10.1016/j.jneuroling.2009.05.002

    Article  Google Scholar 

  77. Tenev A et al (2014) Machine learning approach for classification of ADHD adults. Int J Psychophysiol 93(1):162–166. https://doi.org/10.1016/j.ijpsycho.2013.01.008

    Article  Google Scholar 

  78. Zheng L et al (2020) Development of an early-warning system for high-risk patients for suicide attempt using deep learning and electronic health records. Transl Psych 10(1):1–10. https://doi.org/10.1038/s41398-020-0684-2

    Article  MathSciNet  Google Scholar 

  79. Bernert RA et al (2020) Artificial intelligence and suicide prevention: a systematic review of machine learning investigations. Int J Environ Res Public Health 17(16):5929. https://doi.org/10.3390/ijerph17165929

    Article  Google Scholar 

  80. Bedi G et al (2015) Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizop 1(1):1–7. https://doi.org/10.1038/npjschz.2015.30

    Article  Google Scholar 

  81. Zhu G et al (2019) Applications of deep learning to neuro-imaging techniques. Front Neurol 10:869. https://doi.org/10.3389/fneur.2019.00869

    Article  Google Scholar 

  82. Kang MJ et al (2019) Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data. BMC Med Inform Dec Making 19(1):231. https://doi.org/10.1186/s12911-019-0974-x

    Article  Google Scholar 

  83. Carroll KM, Rounsaville BJ (2010) Computer-assisted therapy in psychiatry: be brave—it’s a new world. Curr Psych Rep 12(5):426–432. https://doi.org/10.1007/s11920-010-0146-2

    Article  Google Scholar 

  84. D’Alfonso S et al (2017) Artificial intelligence-assisted online social therapy for youth mental health. Front Psychol 8:796. https://doi.org/10.3389/fpsyg.2017.00796

    Article  Google Scholar 

  85. Kumar V et al (2017) The effectiveness of internet-based cognitive behavioral therapy in treatment of psychiatric disorders. Cureus 9(8):1626

    Google Scholar 

  86. Postel MG et al (2008) E-therapy for mental health problems: a systematic review. Telemed E-Health 14(7):707–714. https://doi.org/10.1089/tmj.2007.0111

    Article  Google Scholar 

  87. Onnela J-P, Rauch SL (2016) Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuro Psycho Pharmacol 41(7):1691–1696

    Article  Google Scholar 

  88. Bell IH et al (2017) Ecological momentary assessment and intervention in the treatment of psychotic disorders: a systematic review. Psych Serv 68(11):1172–1181. https://doi.org/10.1176/appi.ps.201600523

    Article  Google Scholar 

  89. Robinaugh DJ et al (2020) Towards a precision psychiatry approach to anxiety disorders with ecological momentary assessment: the example of panic disorder. Gen Psych 33(1):e100161. https://doi.org/10.1136/gpsych-2019-100161

    Article  Google Scholar 

  90. Difrancesco S et al (2019) Sleep, circadian rhythm, and physical activity patterns in depressive and anxiety disorders: a 2-week ambulatory assessment study. Depress Anxiety 36(10):975–986. https://doi.org/10.1002/da.22949

    Article  Google Scholar 

  91. Scott J et al (2019) Can consumer grade activity devices replace research grade actiwatches in youth mental health settings? Sleep Biol Rhyth 17(2):223–232. https://doi.org/10.1007/s41105-018-00204-x

    Article  Google Scholar 

  92. Lederman R et al (2014) Moderated online social therapy: designing and evaluating technology for mental health. ACM Trans Comput Hum Interact 21(1):5:1-5:26. https://doi.org/10.1145/2513179

    Article  MathSciNet  Google Scholar 

  93. Houston TK et al (2002) Internet support groups for depression: a 1-year prospective cohort study. Am J Psych 159(12):2062–2068. https://doi.org/10.1176/appi.ajp.159.12.2062

    Article  Google Scholar 

  94. Kuang D, He L (2014) Classification on ADHD with deep learning. In: Proceedings of the 2014 international conference on cloud computing and big data. IEEE

    Google Scholar 

  95. Geraci J et al (2017) Applying deep neural networks to unstructured text notes in electronic medical records for phenotyping youth depression. Evid Based Mental Health 20(3):83–87

    Article  Google Scholar 

  96. Navarro-Haro MV et al (2017) Meditation experts try virtual reality mindfulness: a pilot study evaluation of the feasibility and acceptability of virtual reality to facilitate mindfulness practice in people attending a Mindfulness conference. PLoS ONE 12(11):e0187777

    Article  Google Scholar 

  97. Gosling JA, Glozier N, Griffiths K, Ritterband L, Thorndike F, Mackinnon A et al (2014) The goodnight study-online cbt for insomnia for the indicated prevention of depression: study protocol for a randomised controlled trial. Trials 15:56. https://doi.org/10.1186/1745-6215-15-56

    Article  Google Scholar 

  98. Ewbank MP et al (2020) Quantifying the association between psychotherapy content and clinical outcomes using deep learning. JAMA Psych 77(1):35–43

    Article  Google Scholar 

  99. Mani S, Chen Y, Elasy T, Clayton W, Denny J (2012) Type 2 diabetes risk forecasting from EMR data using machine learning. AMIA 12:606–615

    Google Scholar 

  100. Oka E, Nomura A, Yasugi A, Kometani M, Gondoh Y, Yoshimura K, Yoneds T (2019) Study protocol for the effects of artificial intelligence (AI)—supported automated nutritional intervention on glycemic control in patients with type 2 diabetes mellitus. Diabet Ther 10:1151–1161. https://doi.org/10.1007/s13300-019-0595-5

    Article  Google Scholar 

  101. Dawes TJW et al (2017) Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: a cardiac MR imaging study. Radiology 283(2):381

    Article  MathSciNet  Google Scholar 

  102. Connell J et al (2021) Evidence-based precision nutrition improves clinical outcomes by analyzing human and microbial molecular data with artificial intelligence. bioRxiv

    Google Scholar 

  103. Moser EC, Narayan G (2020) Improving breast cancer care coordination and symptom management by using AI driven predictive toolkits. Breast 50:25–29

    Article  Google Scholar 

  104. Yu C, Helwig EJ (2022) The role of AI technology in prediction, diagnosis and treatment of colorectal cancer. Artif Intell Rev 55(1):323–343

    Article  Google Scholar 

  105. McCrone P et al (2004) Cost-effectiveness of computerised cognitive-behavioural therapy for anxiety and depression in primary care: randomised controlled trial. Br J Psych 185(1):55–62

    Article  Google Scholar 

  106. Fiske A et al (2019) Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J Med Internet Res 21(5):e13216

    Article  Google Scholar 

  107. DeutscherEthikrat (2017) Big data und gesundheitdatensouver??nit??talsinformationelleFreiheitsgestaltung: Stellungnahme. Open WorldCat. http://www.ethikrat.org/dateien/pdf/stellungnahme-big-data-und-gesundheit.pdf

  108. Gerke S et al (2019) Ethical and legal issues of ingestible electronic sensors. Nat Electr 2(8):329–334. https://doi.org/10.1038/s41928-019-0290-6

    Article  Google Scholar 

  109. Cohen IG et al (2014) The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff 33(7):1139–1147. https://doi.org/10.1377/hlthaff.2014.0048

    Article  Google Scholar 

  110. Wahl B et al (2018) Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob Health 3(4):e000798. https://doi.org/10.1136/bmjgh-2018-000798

    Article  Google Scholar 

  111. Oliveira T et al (2014) Development and implementation of clinical guidelines: an artificial intelligence perspective. Artif Intell Rev 42(4):999–1027. https://doi.org/10.1007/s10462-013-9402-2

    Article  Google Scholar 

  112. Cresswell K et al (2018) Health care robotics: qualitative exploration of key challenges and future directions. J Med Internet Res 20(7):e10410

    Article  Google Scholar 

  113. Wentzel J et al (2016) Mixing online and face-to-face therapy: how to benefit from blended care in mental health care. JMIR Mental Health 3(1):e9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swai Vyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vyas, S., Kumari, A. (2024). AI Application in Achieving Sustainable Development Goal Targeting Good Health and Well-Being: A New Holistic Paradigm. In: George, V.I., Santhosh, K.V., Lakshminarayanan, S. (eds) Control and Information Sciences. CISCON 2018. Lecture Notes in Electrical Engineering, vol 1140. Springer, Singapore. https://doi.org/10.1007/978-981-99-9554-7_6

Download citation

Publish with us

Policies and ethics