Skip to main content

The eXtreme Gradient Boosting Method Optimized by Hybridized Sine Cosine Metaheuristics for Ship Vessel Classification

  • Conference paper
  • First Online:
Advances in Data-Driven Computing and Intelligent Systems (ADCIS 2023)

Abstract

Ship classification is essential in coastal areas to ensure safety, protect the environment and improve maritime security. It also allows the optimization of resource allocation and can boost economic growth. Therefore, vessel identification is crucial to employ appropriate security measures. However, communication interruptions can happen during poor weather conditions, which could hinder the overall safety of vessels in the area. Security is, therefore, a main pivotal aspect that drives forward the vessel identification systems. This paper tackles this problem by proposing an XGBoost machine learning model that is optimized by an enhanced variant of the sine cosine metaheuristic algorithm that has the role of identifying and classifying naval vessels. The proposed method has been compared to the results attained by other cutting-edge metaheuristics algorithms, and experimental outcomes show that it obtained supreme results for this particular task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 219.99
Price includes VAT (Austria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/datasets/eminserkanerdonmez/ais-dataset.

References

  1. Alzaqebah A, Aljarah I, Al-Kadi O, Damaševičius R (2022) A modified grey wolf optimization algorithm for an intrusion detection system. Mathematics 10(6)

    Google Scholar 

  2. Andersen R, Nalpantidis L, Ravn O, Boukas E (2020) Investigating deep learning architectures towards autonomous inspection for marine classification. In: 2020 IEEE international symposium on safety, security, and rescue robotics (SSRR). IEEE, pp 197–204

    Google Scholar 

  3. Bacanin N, Budimirovic N, Venkatachalam K, Jassim HS, Zivkovic M, Askar S, Abouhawwash M (2023) Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection. Heliyon 9(4)

    Google Scholar 

  4. Bacanin N, Jovanovic L, Zivkovic M, Kandasamy V, Antonijevic M, Deveci M, Strumberger I (2023) Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks. Inf Sci 119122

    Google Scholar 

  5. Bacanin N, Sarac M, Budimirovic N, Zivkovic M, AlZubi AA, Bashir AK (2022) Smart wireless health care system using graph LSTM pollution prediction and dragonfly node localization. Sustain Comput Inf Syst 35:100711

    Google Scholar 

  6. Bacanin N, Stoean C, Zivkovic M, Jovanovic D, Antonijevic M, Mladenovic D (2022) Multi-swarm algorithm for extreme learning machine optimization. Sensors 22(11):4204

    Google Scholar 

  7. Bacanin N, Stoean C, Zivkovic M, Rakic M, Strulak-Wójcikiewicz R, Stoean R (2023) On the benefits of using metaheuristics in the hyperparameter tuning of deep learning models for energy load forecasting. Energies 16(3):1434

    Google Scholar 

  8. Bacanin N, Zivkovic M, Stoean C, Antonijevic M, Janicijevic S, Sarac M, Strumberger I (2022) Application of natural language processing and machine learning boosted with swarm intelligence for spam email filtering. Mathematics 10(22):4173

    Google Scholar 

  9. Bezdan T, Cvetnic D, Gajic L, Zivkovic M, Strumberger I, Bacanin N (2021) Feature selection by firefly algorithm with improved initialization strategy. In: 7th Conference on the engineering of computer based systems, pp 1–8

    Google Scholar 

  10. Bezdan T, Zivkovic M, Tuba E, Strumberger I, Bacanin N, Tuba M (2020) Glioma brain tumor grade classification from MRI using convolutional neural networks designed by modified FA. In: International conference on intelligent and fuzzy systems. Springer, Berlin, pp 955–963

    Google Scholar 

  11. Bezdan T, Zivkovic M, Tuba E, Strumberger I, Bacanin N, Tuba M (2020) Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm. In: International conference on intelligent and fuzzy systems. Springer, Berlin, pp 718–725

    Google Scholar 

  12. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 785–794

    Google Scholar 

  13. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T et al (2015) XGBoost: extreme gradient boosting. R Package Version 0.4-2 1(4):1–4

    Google Scholar 

  14. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37–46

    Google Scholar 

  15. Duan H, Ma F, Miao L, Zhang C (2022) A semi-supervised deep learning approach for vessel trajectory classification based on AIS data. Ocean Coast Manag 218:106015

    Google Scholar 

  16. Emmerich M, Shir OM, Wang H (2018) Evolution strategies. In: Handbook of heuristics. Springer, Berlin, pp 89–119

    Google Scholar 

  17. Fausto F, Reyna-Orta A, Cuevas E, Andrade ÁG, Perez-Cisneros M (2020) From ants to whales: metaheuristics for all tastes. Artif Intell Rev 53(1):753–810

    Google Scholar 

  18. Jovanovic D, Antonijevic M, Stankovic M, Zivkovic M, Tanaskovic M, Bacanin N (2022) Tuning machine learning models using a group search firefly algorithm for credit card fraud detection. Mathematics 10(13):2272

    Google Scholar 

  19. Jovanovic G, Perisic M, Bacanin N, Zivkovic M, Stanisic S, Strumberger I, Alimpic F, Stojic A (2023) Potential of coupling metaheuristics-optimized-XGBoost and SHAP in revealing PAHs environmental fate. Toxics 11(4):394

    Google Scholar 

  20. Jovanovic L, Jovanovic D, Bacanin N, Jovancai Stakic A, Antonijevic M, Magd H, Thirumalaisamy R, Zivkovic M (2022) Multi-step crude oil price prediction based on LSTM approach tuned by Salp Swarm algorithm with disputation operator. Sustainability 14(21):14616

    Google Scholar 

  21. Jovanovic L, Jovanovic G, Perisic M, Alimpic F, Stanisic S, Bacanin N, Zivkovic M, Stojic A (2023) The explainable potential of coupling metaheuristics-optimized-XGBoost and SHAP in revealing VOCs’ environmental fate. Atmosphere 14(1):109

    Google Scholar 

  22. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE, pp 1942–1948

    Google Scholar 

  23. Kraus P, Mohrdieck C, Schwenker F (2018) Ship classification based on trajectory data with machine-learning methods. In: 2018 19th International radar symposium (IRS). IEEE, pp 1–10

    Google Scholar 

  24. Li H, Yang Z (2023) Incorporation of AIS data-based machine learning into unsupervised route planning for maritime autonomous surface ships. Transp Res Part E Logistics Transp Rev 176:103171

    Google Scholar 

  25. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med 22(3):276–282

    Google Scholar 

  26. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Google Scholar 

  27. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  28. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  29. Mirjalili S, Mirjalili S (2019) Genetic algorithm. In: Evolutionary algorithms and neural networks: theory and applications, pp 43–55

    Google Scholar 

  30. Murray B, Perera LP (2021) An AIS-based deep learning framework for regional ship behavior prediction. Reliab Eng Syst Saf 215:107819

    Google Scholar 

  31. Perez HM, Chang R, Billings R, Kosub TL (2009) Automatic identification systems (AIS) data use in marine vessel emission estimation. In: 18th Annual international emission inventory conference, vol 14, p e17

    Google Scholar 

  32. Petrovic A, Bacanin N, Zivkovic M, Marjanovic M, Antonijevic M, Strumberger I (2022) The AdaBoost approach tuned by firefly metaheuristics for fraud detection. In: 2022 IEEE World conference on applied intelligence and computing (AIC). IEEE, pp 834–839

    Google Scholar 

  33. Rawson A, Brito M, Sabeur Z, Tran-Thanh L (2021) A machine learning approach for monitoring ship safety in extreme weather events. Saf Sci 141:105336

    Google Scholar 

  34. Song J, Kim D, Kang K (2020) Automated procurement of training data for machine learning algorithm on ship detection using AIS information. Remote Sens 12(9):1443

    Google Scholar 

  35. Stankovic M, Antonijevic M, Bacanin N, Zivkovic M, Tanaskovic M, Jovanovic D (2022) Feature selection by hybrid artificial bee colony algorithm for intrusion detection. In: 2022 International conference on edge computing and applications (ICECAA). IEEE, pp 500–505

    Google Scholar 

  36. Stegherr H, Heider M, Hähner J (2020) Classifying metaheuristics: towards a unified multi-level classification system. Nat Comput 1–17

    Google Scholar 

  37. Stoean C, Zivkovic M, Bozovic A, Bacanin N, Strulak-Wójcikiewicz R, Antonijevic M, Stoean R (2023) Metaheuristic-based hyperparameter tuning for recurrent deep learning: application to the prediction of solar energy generation. Axioms 12(3):266

    Google Scholar 

  38. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Google Scholar 

  39. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications: 5th international symposium, SAGA 2009, Sapporo, Japan, 26–28 Oct 2009. Proceedings, vol 5. Springer, Berlin, pp 169–178

    Google Scholar 

  40. Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Google Scholar 

  41. Zhang E, Wang K, Lin G (2019) Classification of marine vessels with multi-feature structure fusion. Appl Sci 9(10):2153

    Google Scholar 

  42. Zivkovic M, Bacanin N, Antonijevic M, Nikolic B, Kvascev G, Marjanovic M, Savanovic N (2022) Hybrid CNN and XGBoost model tuned by modified arithmetic optimization algorithm for COVID-19 early diagnostics from X-ray images. Electronics 11(22):3798

    Google Scholar 

  43. Zivkovic M, Bacanin N, Tuba E, Strumberger I, Bezdan T, Tuba M (2020) Wireless sensor networks life time optimization based on the improved firefly algorithm. In: 2020 International wireless communications and mobile computing (IWCMC). IEEE, pp 1176–1181

    Google Scholar 

  44. Zivkovic M, Bacanin N, Venkatachalam K, Nayyar A, Djordjevic A, Strumberger I, Al-Turjman F (2021) Covid-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain Cities Soc 66:102669

    Google Scholar 

  45. Zivkovic M, Bacanin N, Zivkovic T, Strumberger I, Tuba E, Tuba M (2020) Enhanced grey wolf algorithm for energy efficient wireless sensor networks. In: 2020 Zooming innovation in consumer technologies conference (ZINC). IEEE, pp 87–92

    Google Scholar 

  46. Zivkovic M, Bezdan T, Strumberger I, Bacanin N, Venkatachalam K (2021) Improved Harris Hawks optimization algorithm for workflow scheduling challenge in cloud–edge environment. In: Computer networks, big data and IoT. Springer, Berlin, pp 87–102

    Google Scholar 

  47. Zivkovic M, Venkatachalam K, Bacanin N, Djordjevic A, Antonijevic M, Strumberger I, Rashid TA (2021) Hybrid genetic algorithm and machine learning method for covid-19 cases prediction. In: Proceedings of international conference on sustainable expert systems: ICSES 2020, vol 176. Springer Nature, Berlin, p 169

    Google Scholar 

  48. Zivkovic M, Zivkovic T, Venkatachalam K, Bacanin N (2021) Enhanced dragonfly algorithm adapted for wireless sensor network lifetime optimization. In: Data intelligence and cognitive informatics. Springer, Berlin, pp 803–817

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Bacanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bukumira, M., Zivkovic, M., Antonijevic, M., Jovanovic, L., Bacanin, N., Zivkovic, T. (2024). The eXtreme Gradient Boosting Method Optimized by Hybridized Sine Cosine Metaheuristics for Ship Vessel Classification. In: Das, S., Saha, S., Coello Coello, C.A., Bansal, J.C. (eds) Advances in Data-Driven Computing and Intelligent Systems. ADCIS 2023. Lecture Notes in Networks and Systems, vol 891. Springer, Singapore. https://doi.org/10.1007/978-981-99-9524-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9524-0_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9523-3

  • Online ISBN: 978-981-99-9524-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics