Skip to main content

Abstract

Large datasets are frequently gathered, stored and analysed in the big data age with the goal of guiding biological discoveries and validating hypotheses. There is no question that the introduction of new technologies and open data initiatives has significantly enhanced the volume and diversity of data. The whole drug development process uses big data, from identifying targets and mechanisms of action to finding new leads and therapeutic candidates. With the intention of giving readers a broad overview of the computing resources and databases accessible, these approaches are shown and explored. We believe that big data leveraging should prioritize personalized care and be cost-effective. On the basis of their synergy, we suggest combining information technologies with (chemo) informatics tools to accomplish this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya C, Coop A, Polli JE, Mackerell AD Jr (2011) Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des 7(1):10–22. https://doi.org/10.2174/157340911793743547; PMID: 20807187; PMCID: PMC2975775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agamah FE, Mazandu GK, Hassan R, Bope CD, Thomford NE, Ghansah A, Chimusa ER (2020) Computational/in silico methods in drug target and lead prediction. Brief Bioinform 21(5):1663–1675

    Article  PubMed  Google Scholar 

  • Agarwal G, Gabrani R (2021) Antiviral peptides: identification and validation. Int J Pept Res Ther 27:149–168

    Article  CAS  PubMed  Google Scholar 

  • Agüero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, Campbell RK, Verlinde CL (2008) Genomic-scale prioritization of drug targets: the TDR targets database. Nat Rev Drug Discov 7(11):900–907

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Lazikani B, Gaulton A, Paolini G, Lanfear J, Overington J, Hopkins A (2007) The molecular basis of predicting druggability. Bioinform Genom Ther 1:1315–1334

    Article  Google Scholar 

  • Bakheet TM, Doig AJ (2009) Properties and identification of human protein drug targets. Bioinformatics 25(4):451–457

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith AVB (2015) Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res 43(7):3407–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning (Vol 4, No 4). Springer, New York, NY, p 738

    Google Scholar 

  • Blundell TL, Sibanda BL, Montalvão RW, Brewerton S, Chelliah V, Worth CL, Burke D (2006) Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos Trans R Soc B Biol Sci 361(1467):413–423

    Article  CAS  Google Scholar 

  • Breitkreutz BJ, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4:1–4

    Article  Google Scholar 

  • Chandra N (2009) Computational systems approach for drug target discovery. Expert Opin Drug Discovery 4(12):1221–1236

    Article  CAS  Google Scholar 

  • Chandra N, Anand P, Yeturu K (2010) Structural bioinformatics: deriving biological insights from protein structures. Interdiscip Sci 2:347–366

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Butte A (2016) Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther 99(3):285–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Li Q, Wang Y, Bryant SH (2011) Identifying compound-target associations by combining bioactivity profile similarity search and public databases mining. J Chem Inf Model 51(9):2440–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clementi E, André JM, McCammon JA (eds) (2012) Theory and applications in computational chemistry: the first decade of the second millennium. American Institute of Physics, College Park, ML

    Google Scholar 

  • Douville C, Carter H, Kim R, Niknafs N, Diekhans M, Stenson PD, Karchin R (2013) CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics 29(5):647–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elton TS, Yalowich JC (2015) Experimental procedures to identify and validate specific mRNA targets of miRNAs. EXCLI J 14:758

    PubMed  PubMed Central  Google Scholar 

  • Forst CV (2002) Network genomics–a novel approach for the analysis of biological systems in the post-genomic era. Mol Biol Rep 29:265–280

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X, Jiang H (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 9:1–7

    Article  Google Scholar 

  • Grapov D, Wanichthanarak K, Fiehn O (2015) MetaMapR: pathway independent metabolomic network analysis incorporating unknowns. Bioinformatics 31(16):2757–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, Baldock R, Kasprzyk A (2011) BioMart central portal: an open database network for the biological community. Database 2011:bar041

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan S, Daugelat S, Rao PS, Schreiber M (2006) Prioritizing genomic drug targets in pathogens: application to mycobacterium tuberculosis. PLoS Comput Biol 2(6):e61

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Jarada TN, Rokne JG, Alhajj R (2020) A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J Chem 12(1):1–23

    Google Scholar 

  • Jenkins JL, Bender A, Davies JW (2006) In silico target fishing: predicting biological targets from chemical structure. Drug Discov Today Technol 3(4):413–421

    Article  Google Scholar 

  • Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Roth BL (2009) Predicting new molecular targets for known drugs. Nature 462(7270):175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langrea R (2022) Computational approaches in fragment based drug design. Drug Des 11:221

    Google Scholar 

  • Levy J (2000) The effects of antibiotic use on gastrointestinal function. Am J Gastroenterol 95(1):S8–S10

    Article  CAS  PubMed  Google Scholar 

  • Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Jiang H (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34(suppl_2):W219–W224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay MA (2003) Target discovery. Nat Rev Drug Discov 2(10):831–838

    Article  CAS  PubMed  Google Scholar 

  • Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Moore HF (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580–585

    Article  CAS  Google Scholar 

  • Mascini M, Dikici E, Robles Mañueco M, Perez-Erviti JA, Deo SK, Compagnone D, Daunert S (2019) Computationally designed peptides for Zika virus detection: an incremental construction approach. Biomol Ther 9(9):498

    CAS  Google Scholar 

  • Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157. https://doi.org/10.2174/157340911795677602; PMID: 21534921; PMCID: PMC3151162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A (2018) Critical assessment of methods of protein structure prediction (CASP)—round XII. Proteins 86:7–15

    Article  CAS  PubMed  Google Scholar 

  • Muresan S, Sitzmann M, Southan C (2012) Mapping between databases of compounds and protein targets. Methods Mol Biol 910:145–164. https://doi.org/10.1007/978-1-61779-965-5_8; PMID: 22821596; PMCID: PMC7449375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevola L, Giralt E (2015) Modulating protein–protein interactions: the potential of peptides. Chem Commun 51(16):3302–3315

    Article  CAS  Google Scholar 

  • Nidhi, Glick M, Davies JW, Jenkins JL (2006) Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J Chem Inf Model 46(3):1124–1133

    Article  CAS  PubMed  Google Scholar 

  • Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5(1):320

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15(15–16):656–667

    Article  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Raman K, Chandra N (2008) Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 8:1–13

    Article  Google Scholar 

  • Raman K, Vashisht R, Chandra N (2009) Strategies for efficient disruption of metabolism in mycobacterium tuberculosis from network analysis. Mol BioSyst 5(12):1740–1751

    Article  CAS  PubMed  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riolo G, Cantara S, Marzocchi C, Ricci C (2020) miRNA targets: from prediction tools to experimental validation. Methods Protoc 4(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritchie W, Rasko JE (2014) Refining microRNA target predictions: sorting the wheat from the chaff. Biochem Biophys Res Commun 445(4):780–784

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40(W1):W452–W457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(suppl_1):D535–D539

    Article  CAS  PubMed  Google Scholar 

  • Strong M, Eisenberg D (2007) The protein network as a tool for finding novel drug targets. Prog Drug Res 64:191–215

    CAS  PubMed  Google Scholar 

  • Stumm G, Russ A, Nehls M (2002) Deductive genomics: a functional approach to identify innovative drug targets in the post-genome era. Am J Pharmacogenomics 2(4):263–271

    Article  CAS  PubMed  Google Scholar 

  • Tan YT, Tillett DJ, McKay IA (2000) Molecular strategies for overcoming antibiotic resistance in bacteria. Mol Med Today 6(8):309–314

    Article  CAS  PubMed  Google Scholar 

  • Thompson R, Johnston L, Taruscio D, Monaco L, Béroud C, Gut IG, Lochmüller H (2014) RD-connect: an integrated platform connecting databases, registries, biobanks and clinical bioinformatics for rare disease research. J Gen Intern Med 29:780–787

    Article  PubMed Central  Google Scholar 

  • Voit EO (2000) Computational analysis of biochemical systems: a practical guide for biochemists and molecular biologists. Cambridge University Press

    Google Scholar 

  • Wessel J, Chu AY, Willems SM, Wang S, Yaghootkar H, Brody JA, Bottinger EP (2015) Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 6(1):5897

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Xie L, Bourne PE (2011) Structure-based systems biology for analyzing off-target binding. Curr Opin Struct Biol 21(2):189–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tao C, Jiang G, Nair AA, Su J, Chute CG, Liu H (2014) Network-based analysis reveals distinct association patterns in a semantic MEDLINE-based drug-disease-gene network. J Biomed Semantics 5(1):1–13

    Article  Google Scholar 

  • Zhao S, Li S (2010) Network-based relating pharmacological and genomic spaces for drug target identification. PLoS One 5(7):e11764

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shinde, S.S., Padule, K.B., Sawant, S.L., Sarkate, A.P. (2024). Systems Approach for Identifying Drug Targets by Computational Approaches. In: Joshi, S., Ray, R.R., Nag, M., Lahiri, D. (eds) Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-9462-5_10

Download citation

Publish with us

Policies and ethics