Skip to main content

Pulse Radiator in Free Space

  • Chapter
  • First Online:
Electromagnetic Sources and Electromagnetic Fields

Part of the book series: Modern Antenna ((MA))

  • 179 Accesses

Abstract

Pulse radiator in free space is a suitable example to use for deriving the energy separation formulae because all the energies are finite and their performances with respect to the source can be examined rigorously. By analogy with the electromagnetic energy concepts in the classical charged particle theory and using the relationships derived from the Maxwell equations, the total electromagnetic energy of a pulse radiator is divided into three parts. The first part is the Coulomb-velocity energy. It disappears immediately after the source has disappeared. The second part also disappears a short while later after the source has disappeared. It is called the macroscopic Schott energy in this book because its behavior is similar to the Schott energy in the charged particle theory. The third part is the radiative electromagnetic energy which keeps propagating in free space till it encounters other sources. The energy separation formulae for time harmonic waves are also available. The results in time domain and frequency domain are completely in consistent because they are respectively derived from the time domain Maxwell equations and the frequency domain Maxwell equations directly. It is also verified with the Hertzian dipole both in frequency domain and in time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong JA (2008) Electromagnetic wave theory. EMW Publishing, Cambridge, MA

    Google Scholar 

  2. Collin RE (1991) Field theory of guided waves, 2nd edn. IEEE Press, New York

    Google Scholar 

  3. Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York

    Google Scholar 

  4. Xiao GB, Liu R (2023) Explicit definitions for the electromagnetic energies in electromagnetic radiation and mutual coupling. Electronics 12(9):4031

    Article  Google Scholar 

  5. Xiao GB (2023) The Schott energy and the reactive energy in electromagnetic radiation and mutual coupling. Phys Scr 98:015512

    Article  Google Scholar 

  6. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  7. Schott GA (1912) Electromagnetic radiation and the mechanical reactions arising from it. Cambridge University Press, Cambridge

    Google Scholar 

  8. Rowland DR (2010) Physical interpretation of the Schott energy of an accelerating point charge and the question of whether a uniformly accelerating charge radiates. Eur J Phys 31:1037–1051

    Article  Google Scholar 

  9. Grøn Ø (2011) The significance of the Schott energy for energy-momentum conservation of a radiating charge obeying the Lorentz-Abraham-Dirac equation. Am J Phys 79(1):115–122

    Article  MathSciNet  Google Scholar 

  10. Nakamura T (2020) On the Schott term in the Lorentz-Abraham-Dirac equation. Quantum Beam Sci 4:34

    Article  Google Scholar 

  11. Vandenbosch GAE (2013) Radiators in time domain—Part I: electric, magnetic, and radiated energies. IEEE Trans Antennas Propag 61(8):3995–4003

    Article  MathSciNet  Google Scholar 

  12. Vandenbosch E (2013) Radiators in time domain—Part II: finite pulses, sinusoidal regime and Q factor. IEEE Trans Antennas Propag 61(8):4004–4012

    Article  MathSciNet  Google Scholar 

  13. Poynting JH (1884) On the connexion between electric current and the electric and magnetic inductions in the surrounding field. Proc Royal Soc London 38:168–172

    Google Scholar 

  14. Emanuel AE (2007) About the rejection of Poynting vector in power systems analysis. J Electr Power Qual Util 8(1):43–48

    MathSciNet  Google Scholar 

  15. Kinsler P, Favaro A, McCall MW (2009) Four Poynting theorems. Eur J Phys 30(5):983–993

    Article  MathSciNet  Google Scholar 

  16. Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115:485

    Article  MathSciNet  Google Scholar 

  17. Tonomura A, Osakabe N, Matsuda T et al (1986) Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys Rev Lett 56:792

    Article  Google Scholar 

  18. Xiao GB (2022) An interpretation for Aharonov-Bohm effect with classical electromagnetic theory. Preprint at https://doi.org/10.48550/arXiv.2201.12292

  19. Xiao GB, Xiong C, Huang S et al (2020) A new perspective on the reactive electromagnetic energies and Q factors of antennas. IEEE Access 8(8999565):173790–173803

    Article  Google Scholar 

  20. Xiao GB (2020) Electromagnetic energy balance equations and Poynting Theorem Preprint. https://doi.org/10.36227/techrxiv.12555698.v1

  21. Xiao GB, Hu Y and Xiang S (2020) Comparison of five formulations for evaluating Q factors of antennas. Paper presented at IEEE MTT-S international conference on numerical electromagnetic and multiphysics modeling and optimization, Hangzhou, China, 7–9 Dec 2020

    Google Scholar 

  22. Chu LJ (1948) Physical limitations on omni-directional antennas. J Appl Phys 19(12):1163–1175

    Article  Google Scholar 

  23. McLean JS (1996) A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Trans Antennas Propag 44(5):672–676

    Article  Google Scholar 

  24. Rao SM, Wilton DR (1991) Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans Antennas Propag 39(1):56–61

    Article  Google Scholar 

  25. Tian X, Xiao GB, Xiang S (2014) Application of analytical expressions for retarded-time potentials in analyzing the transient scattering by dielectric objects. IEEE Antennas Wireless Propag Lett 13:1313–1316

    Article  Google Scholar 

  26. Rao SM, Wilton DR, Glisson AW (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag 30(3):409–418

    Article  Google Scholar 

  27. Huang S, Xiao GB, Hu Y, Liu R, Mao JF (2021) Multi-branch Rao-Wilton-Glisson basis functions for electromagnetic scattering problems. IEEE Trans Antennas Propag 69(10):6624–6634

    Article  Google Scholar 

  28. Xiao GB (2022) Calculating the energies of a pulse radiator with marching-on in time algorithm. Paper presented at IEEE international symposium on antennas and propagation, Denver, USA, 10–15 Jul 2022

    Google Scholar 

  29. Carpenter CJ (1989) Electromagnetic energy and power in terms of charges and potentials instead of fields. IEE Proc A 136(2):55–65

    Google Scholar 

  30. Endean VG, Carpenter CJ (1992) Electromagnetic energy and power in terms of charges and potentials instead of fields. IEE Proc A 139(6):338–342

    Google Scholar 

  31. Collin RE, Rothschild S (1964) Evaluation of antenna Q. IEEE Trans Antennas Propag 12(1):23–27

    Article  Google Scholar 

  32. Fante RL (1969) Quality factor of general antennas. IEEE Trans Antennas Propag 17(2):151–155

    Article  MathSciNet  Google Scholar 

  33. Rhodes DR (1977) A reactance theorem. Proc R Soc London A 353(1672):1–10

    Article  MathSciNet  Google Scholar 

  34. Yaghjian AD, Best SR (2005) Impedance, bandwidth, and Q of antennas. IEEE Trans Antennas Propag 53(4):1298–1324

    Article  Google Scholar 

  35. Vandenbosch GAE (2010) Reactive energies, impedance, and Q factor of radiating structures. IEEE Trans Antennas Propag 58(4):1112–1127

    Article  MathSciNet  Google Scholar 

  36. Gustafsson M, Jonsson BLG (2015) Antenna Q and stored energy expressed in the fields, currents, and input impedance. IEEE Trans Antennas Propag 63(1):240–249

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaobiao Xiao .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, G. (2024). Pulse Radiator in Free Space. In: Electromagnetic Sources and Electromagnetic Fields. Modern Antenna. Springer, Singapore. https://doi.org/10.1007/978-981-99-9449-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9449-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9448-9

  • Online ISBN: 978-981-99-9449-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics