Skip to main content

New Therapeutic Strategies for Cervical Cancer with Special Reference to Immunotherapy

  • Chapter
  • First Online:
Recent Topics on Prevention, Diagnosis, and Clinical Management of Cervical Cancer

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

  • 68 Accesses

Abstract

Immunotherapy has emerged as a promising treatment option for advanced cervical cancer, which has limited surgical and radiation therapy indications. The immunosuppressive environment in tumor tissues, caused by cancer cells, has a crucial role in immune evasion. Mechanisms such as the downregulation of antigen-presenting molecules, recruitment of immune suppressor cells, and T cell exhaustion contribute to immune resistance. Immune checkpoint inhibitors (ICIs) block inhibitory signals and enhance anti-tumor immune responses. Among ICIs, anti-programmed cell death 1 (anti-PD-1) has shown particularly good clinical outcomes compared with conventional chemotherapy. Adoptive T cell therapy (ACT) utilizing tumor-infiltrating lymphocytes has shown durable complete responses in advanced cervical cancer patients. Therapeutic vaccines targeting human papillomavirus antigens, such as Listeria monocytogenes-based vaccines and DNA vaccines, have demonstrated encouraging results in preclinical and clinical studies. Ongoing trials are evaluating the efficacy of ICIs, ACT, and therapeutic vaccines in various settings, including first-line treatment and combination approaches. The use of immunotherapy strategies is revolutionizing the treatment of cervical cancer and offers new hope for patients with advanced disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tewari KS, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370:734–43. https://doi.org/10.1056/NEJMoa1309748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. https://doi.org/10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Topalian SL, et al. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with Nivolumab. JAMA Oncol. 2019;5:1411–20. https://doi.org/10.1001/jamaoncol.2019.2187.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65. https://doi.org/10.1056/NEJMoa1200694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61. https://doi.org/10.1016/j.ccell.2015.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walboomers JM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou C, Tuong ZK, Frazer IH. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front Oncol. 2019;9:682. https://doi.org/10.3389/fonc.2019.00682.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Klempner SJ, et al. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence. Oncologist. 2020;25:e147–59. https://doi.org/10.1634/theoncologist.2019-0244.

    Article  PubMed  Google Scholar 

  10. Lazo PA. The molecular genetics of cervical carcinoma. Br J Cancer. 1999;80:2008–18. https://doi.org/10.1038/sj.bjc.6690635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20. https://doi.org/10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang J, et al. HPV-positive status associated with inflamed immune microenvironment and improved response to anti-PD-1 therapy in head and neck squamous cell carcinoma. Sci Rep. 2019;9:13404. https://doi.org/10.1038/s41598-019-49771-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mezache L, Paniccia B, Nyinawabera A, Nuovo GJ. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol. 2015;28:1594–602. https://doi.org/10.1038/modpathol.2015.108.

    Article  CAS  PubMed  Google Scholar 

  14. Enwere EK, et al. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod Pathol. 2017;30:577–86. https://doi.org/10.1038/modpathol.2016.221.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor BC, Balko JM. Mechanisms of MHC-I downregulation and role in immunotherapy response. Front Immunol. 2022;13:844866. https://doi.org/10.3389/fimmu.2022.844866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185. https://doi.org/10.1155/2014/149185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125:3356–64. https://doi.org/10.1172/JCI80005.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kamphorst AO, et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 2017;355:1423–7. https://doi.org/10.1126/science.aaf0683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95. https://doi.org/10.1002/j.1460-2075.1992.tb05481.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118:9–16. https://doi.org/10.1038/bjc.2017.434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chamoto K, Hatae R, Honjo T. Current issues and perspectives in PD-1 blockade cancer immunotherapy. Int J Clin Oncol. 2020;25:790–800. https://doi.org/10.1007/s10147-019-01588-7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39:98–106. https://doi.org/10.1097/COC.0000000000000239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung HC, et al. Efficacy and safety of Pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2019;37:1470–8. https://doi.org/10.1200/JCO.18.01265.

    Article  CAS  PubMed  Google Scholar 

  24. Colombo N, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N Engl J Med. 2021;385:1856–67. https://doi.org/10.1056/NEJMoa2112435.

    Article  CAS  PubMed  Google Scholar 

  25. Tewari KS, et al. Survival with Cemiplimab in recurrent cervical cancer. N Engl J Med. 2022;386:544–55. https://doi.org/10.1056/NEJMoa2112187.

    Article  CAS  PubMed  Google Scholar 

  26. Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol. 2013;94:41–53. https://doi.org/10.1189/jlb.1212631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naumann RW, Oaknin A, Meyer T, Lopez-Picazo JM, Lao C, Bang Y-J. Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: results from CheckMate 358. Ann Oncol. 2019;30:v898–9.

    Article  Google Scholar 

  28. Keam SJ. Cadonilimab: first approval. Drugs. 2022;82:1333–9. https://doi.org/10.1007/s40265-022-01761-9.

    Article  CAS  PubMed  Google Scholar 

  29. X, W. in Society of Gynecologic Oncology Annual Meeting on Womens' cancer. Phoenix, AZ. 2022.

    Google Scholar 

  30. Draper LM, et al. Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6. Clin Cancer Res. 2015;21:4431–9. https://doi.org/10.1158/1078-0432.CCR-14-3341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rohaan MW, Wilgenhof S, Haanen J. Adoptive cellular therapies: the current landscape. Virchows Arch. 2019;474:449–61. https://doi.org/10.1007/s00428-018-2484-0.

    Article  PubMed  Google Scholar 

  32. Dai H, Wang Y, Lu X, Han W. Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst. 2016;108:djv439. https://doi.org/10.1093/jnci/djv439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Norberg SM, Hinrichs CS. Engineered T cell therapy for viral and non-viral epithelial cancers. Cancer Cell. 2023;41:58–69. https://doi.org/10.1016/j.ccell.2022.10.016.

    Article  CAS  PubMed  Google Scholar 

  34. Rosenberg SA, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319:1676–80. https://doi.org/10.1056/NEJM198812223192527.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–8. https://doi.org/10.1126/science.aaa4967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. FDA Grants Orphan Drug Designation to Novel TIL Therapy for Advanced-Stage Melanoma. 2021.

    Google Scholar 

  37. Stevanovic S, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol. 2015;33:1543–50. https://doi.org/10.1200/JCO.2014.58.9093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stevanovic S, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356:200–5. https://doi.org/10.1126/science.aak9510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stevanovic S, et al. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin Cancer Res. 2019;25:1486–93. https://doi.org/10.1158/1078-0432.CCR-18-2722.

    Article  CAS  PubMed  Google Scholar 

  40. Yin H, et al. TILs and anti-PD1 therapy: an alternative combination therapy for PDL1 negative metastatic cervical cancer. J Immunol Res. 2020;2020:8345235. https://doi.org/10.1155/2020/8345235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huh WK, et al. Phase II study of axalimogene filolisbac (ADXS-HPV) for platinum-refractory cervical carcinoma: an NRG oncology/gynecologic oncology group study. Gynecol Oncol. 2020;158:562–9. https://doi.org/10.1016/j.ygyno.2020.06.493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Basu P, et al. A randomized phase 2 study of ADXS11-001 listeria monocytogenes-Listeriolysin O immunotherapy with or without cisplatin in treatment of advanced cervical cancer. Int J Gynecol Cancer. 2018;28:764–72. https://doi.org/10.1097/IGC.0000000000001235.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Choi YJ, et al. A phase II, prospective, randomized, multicenter, open-label study of GX-188E, an HPV DNA vaccine, in patients with cervical intraepithelial neoplasia 3. Clin Cancer Res. 2020;26:1616–23. https://doi.org/10.1158/1078-0432.CCR-19-1513.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Ludovic Croxford, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Iwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iwata, T. (2024). New Therapeutic Strategies for Cervical Cancer with Special Reference to Immunotherapy. In: Aoki, D. (eds) Recent Topics on Prevention, Diagnosis, and Clinical Management of Cervical Cancer. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-99-9396-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9396-3_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9395-6

  • Online ISBN: 978-981-99-9396-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics