Skip to main content

Microbial Biostimulants: A Sustainable Approach Toward Potential Plant Nutrition and Improved Crop Production

  • Chapter
  • First Online:
Plant Holobiome Engineering for Climate-Smart Agriculture

Abstract

To fulfill the consumer food requirements free of potentially hazardous residues, modern agriculture increasingly calls for an alternative to synthetic chemicals, particularly fertilizers and pesticides. As a crucial component of an integrated crop management system, plant biostimulants enable modern agriculture to become more robust and sustainable. Microbial (rhizobacteria and fungi) biostimulants are a sustainable and efficient replacement for their synthetic counterparts, favorable to the human health, environment, biodiversity, ecosystem, and economy. The purpose of microbial biostimulants is to stimulate natural processes to improve plant uptake, consumption efficiency of nutrients, abiotic stress resistance, biocontrol, and crop quality when treated to foliage or the rhizosphere. Henceforth, worldwide attention has increased to using microbial biostimulants as an eco-friendly substitute for sustainable crop production. This chapter gives an overview of the concept, main categories of microbial biostimulants, and their approaches toward sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Ahmad I, Khan MS (2019) Screening of plant growth promoting fungi for drought tolerance potential in wheat (Triticum aestivum). Int J Environ Sci Technol 16(9):5005–5014

    Google Scholar 

  • Akello J, Dubois T, Gold CS, Coyne D, Nakimbugwe D (2018) Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.) plants to control the banana weevil (Cosmopolites sordidus Germar). Crop Prot 108:39–45

    Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Atikur Rahman KM, Zhang D (2018) Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustain For 10:759

    Article  Google Scholar 

  • Awasthi R, Tewari R, Nayyar H (2011) Synergy between plants and P-solubilizing microbes in soils: effects on growth and physiology of crops. Int Res J Microbiol 2:484–503

    Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE, Trujillo-Moya C (2014) Rhizosphere bacteria of Cuatro Cienegas Basin: plant growth-promoting traits and promotion of cactus seedling growth. Antonie Van Leeuwenhoek 105(4):749–763

    Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ (2014) Abscisic acid metabolizing rhizobacteria decrease abscisic acid concentrations in plants and alter plant growth. Plant Physiol Biochem 74:84–91

    Article  CAS  PubMed  Google Scholar 

  • Berraho EB, Mapelli F, Guesmi A, Quatrini P, Cherki RA, Borin S et al (2019) Rhizobium-legume symbiosis in arid and semi-arid areas: challenges and prospects. Rhizosphere 10:100148

    Google Scholar 

  • Bertand H, Nalin R, Bally R, Cleyet-Marel JC (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napa L.). Biol Fertil Soils 33:152–156

    Article  Google Scholar 

  • Bharti N, Barnawal D (2018) Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In: Singh AK, Kumar A, Singh PK (eds) PGPR amelioration in sustainable agriculture: food security and environmental management. Woodhead Publishing, pp 85–106

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Yu SM, Lee YH (2015) Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues. Plant Growth Regul 75:297–306

    Article  CAS  Google Scholar 

  • Bokulich NA, Collins TS, Masarweh C, Allen G, Heymann H, Ebeler SE, Mills DA (2016) Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. MBio 7(3):e00631–e00616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown P, Saa S (2015) Biostimulants in agriculture. Front Plant Sci 6:671

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306

    Article  CAS  Google Scholar 

  • Burns RG, Dick RP (2002) Enzymes in the environment: activity, ecology, and application. CRC Press, Boca Raton, FL; ISBN 0203904036

    Book  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Chen L, Dodd IC, Theobald JC, Belimov AA, Davies WJ (2013) The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J Exp Bot 64:1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colla G, Rouphael Y (2015) Biostimulants in horticulture. Sci Hortic 196:1–2

    Article  Google Scholar 

  • Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, Rouphael Y (2015) Protein hydrolysates as biostimulants in horticulture. Sci Hortic 96:28–38

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2010) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  Google Scholar 

  • Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A (2019) Burkholderia aspalathi sp. nov., isolated from root nodules of the south African legume Aspalathus spp. Int J Syst Evol Microbiol 69(9):2920–2927

    Google Scholar 

  • Connor NS, Juliann R, Seebauer, Frederick EB (2021) Plant biostimulants: a categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy 11:1297

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2014) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 165(4):1891–1899

    Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Lopez-Bucio J (2019) Trichoderma spp.—a biocontrol agent for sustainable agriculture. In: Plant growth-promoting Rhizobacteria. Springer, pp 175–201

    Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA, Suárez-Rodríguez R (2005) Azospirillum inoculation mitigates water stress effects in maize seedlings. Curr Microbiol 50(2):109–114

    Google Scholar 

  • Danish S, Zafar-ul-hye M, Hussain S, Riaz M, Qayyum MF, Multan U (2020) Mitigation of drought stress in maize through inoculation with drought tolerant ACC deaminase containing PGPR under axenic conditions. Pakistan J Bot 52:49–60

    CAS  Google Scholar 

  • De Pascale S, Rouphael Y, Colla G (2017) Plant biostimulants: an innovative tool for enhancing plant nutrition in organic farming. Eur J Hortic Sci 82:277–285

    Article  Google Scholar 

  • Desai A, Ruparelia J, Jha CK, Sayyed RZ, Mitra D, Priyadarshini A, Senapati A, Panneerselvam A, Mohapatra PKD (2022) Articulating beneficial rhizobacteria mediated plant defenses through induced systemic resistances. Pedosphere

    Google Scholar 

  • Du Jardin P (2012) The science of plant biostimulants: a bibliographic analysis. Ad hoc study report to the European Commission DG ENTR. http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/final%report%bio2012en.pdf

  • El-Komy MH, Saleh AA, Eranthodi A, Molan YY (2015) Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathol J 31:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esitken A, Karlidag H, Ercisli S, Turan M, Sahin F (2003) The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust J Agric Res 54:377–380

    Article  Google Scholar 

  • Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Fallah M, Hadi H, Amirnia R, Ghorttapeh AH, Ali TKZ, Sayyed RZ (2021) Eco-friendly soil amendments improve growth, antioxidant activities, and root colonization in lingrain (linum usitatissimum L.) under drought condition. PLoS One 16:e026122

    Article  Google Scholar 

  • Farag MA, Zhang HM, Ryu CM (2013) Dynamic chemical communications between plants and bacteria through airbone signals induced resistance by bacterial volatiles. J Chem Ecol 39:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faye A, Dalpe Y, Ndoye FC, Jefwa JM (2021) Effects of arbuscular mycorrhizal fungi and streptomycetes on growth and development of carrots and their associated microbial communities. Microorganisms 9(3):607

    Google Scholar 

  • Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, Romano I, Lombardi N, Napolitano M, Colla G, Rouphael Y (2018) Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front Plant Sci 9:743

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev 25:68–72

    Article  Google Scholar 

  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724

    Article  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. Adv Agron 129:141–174

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267

    Article  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2013) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 366(1–2):287–302

    Google Scholar 

  • Ji P, Campbell HL, Kloepper JW, Jones JB (2019) Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biol Control 134:136–144

    Google Scholar 

  • Ju W, Jin X, Liu L, Shen G, Zhao W, Duan C, Fang L (2020) Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil: drivers from bacterial community structures in rhizosphere. Appl Soil Ecol 150:103450.267-275

    Article  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38(6):651–664

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2020) Improved tolerance of pea (Pisum sativum L.) to temperature stress by coinoculation of thermotolerant plant growth-promoting microbes. Arch Microbiol 202(3):619–632

    Google Scholar 

  • Kauffman GL, Kneivel DP, Watschke TL (2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci 47:261–267

    Article  CAS  Google Scholar 

  • Khan I, Awan SA, Ikram R, Rizwan M, Akhtar N, Yasmin H (2021) Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. Physiol Plantarum 172:696–706

    Article  CAS  Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus glomus intraradices can hydrolyze organic phosphate. New Phytol 148:511–517

    Article  CAS  PubMed  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 2:257–266

    Article  Google Scholar 

  • Kruger M, Kruger C, Wlaker C, Stockinger H, Schuler A (2012) Phylogenetic reference data of systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Le Mire G, Nguyen M, Fassotte B, du Jardin P, Verheggen F, Delaplace P, Jijakli H (2016) Implementing biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol Agron Soc Environ 20:299–313

    Article  Google Scholar 

  • Li J, Ovakim DH, Charles TC, Glick BR (2018) An ACC deaminase minus mutant of Enterobacter sp. 638 shows improved nodulation of Vigna radiata. J Microbiol 56(3):181–188

    Google Scholar 

  • Lopez-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multi-level properties of a plant beneficial fungus. Sci Hortic 196:109–123

    Article  Google Scholar 

  • Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA (2013) Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett 346(2):146–154

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Woo SL (2015) Discussion agronomic. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International Publishing, Berlin, pp 345–353

    Chapter  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2016) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by brassica spp. Chemosphere 162:307–319

    Google Scholar 

  • Maheshwari DK, Saraf M, Dheeman S (2019) Plant growth-promoting rhizobacteria (PGPR) as protagonists of ever-sustained agriculture: an introduction. In: Field crops: sustainable management by PGPR. Springer, pp 1–10

    Chapter  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, AbouHadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascarin GM, Jackson MA, Behle RW, Kobori NN, Delalibera I, Dunlap CA (2017) Metarhizium spp. and Beauveria bassiana: insect-pathogenic fungi with activity against adult insects in mushroom crops. J Invertebr Pathol 148:89–97

    Google Scholar 

  • McDaniel M (2017) What is soil health, how do we measure it, and why the emphasis on soil biology? In proceedings of the 29th annual integrated crop management conference, Ames, IA, USA

    Google Scholar 

  • Mukherjee A (2015) Prioritization of problems in integrated agriculture: a case of Rampur village in sub humid region of eastern India. Indian Res J Ext Educ 15(1):53–59

    Google Scholar 

  • Mukherjee A, Bahal R, Burman RR, Dubey SK, Jha GK (2011) Effectiveness of Tata Kisan Sansar in technology advisory and delivery services in Uttar Pradesh. Indian Res J Ext Educ 11(3):8–13

    Google Scholar 

  • Murphy JF, Reddy MS, Ryu CM, Kloepper JW, Li R (2003) Rhizobacteria-mediated growth promotion of tomato leads to protection against cucumber mosaic virus. Phytopathology 93:1301–1307

    Article  PubMed  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Phosphorus in action. Springer, Berlin/Heidelberg, Germany, pp 215–243

    Chapter  Google Scholar 

  • Novo LA, Castro PM, Alvarenga P, da Silva EF (2018) Plant growth-promoting rhizobacteria-assisted phytoremediation of mine soils. In: Prasad MNV, de Campos Favas PJ, Maiti SK (eds) Bio-geotechnologies for mine site rehabilitation. Elsevier Inc., Amsterdam, pp 281–295

    Chapter  Google Scholar 

  • Pahari A, Mishra BB (2017) Characterization of siderophore producing rhizobacteria and its effect on growth performance of different vegetables. Int J Curr Microbiol App Sci 6:1398–1405

    Article  CAS  Google Scholar 

  • Paradikovic N, Teklic T, Zeljkovic S, Lisjak M, Spoljarevic M (2019) Biostimulants research in some horticultural plant species: a review. Food Energy Security 8:e00162

    Article  Google Scholar 

  • Paul K, Sorrentino M, Lucini L, Rouphael Y, Cardarelli M, Bonini P, Reynaud H, Canaguier R et al (2019) Understanding the biostimulant action of vegetable-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: a case study on tomato. Front Plant Sci 10:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Paungfoo-Lonhienne C, Redding M, Pratt C, Wang W (2019) Plant growth promoting rhizobacteria increase the efficiency of fertilizers while reducing nitrogen loss. J Environ Manag 233:337–341

    Article  CAS  Google Scholar 

  • Perez E, Sulbaran M, Ball MM, Yarzabal LA (2007) Isolation y characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  PubMed  Google Scholar 

  • Podile AR, Kishore GK (2007) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Google Scholar 

  • Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N, Sayyed RZ, Mirza H (2023) Crop microbiome: their role and advances in molecular and Omic techniques for the sustenance of agriculture. Planta 257:27

    Article  CAS  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Rai PK, Singh S, Rai AK, Yadav A, Sayyed RZ, Yadav AN (2022) Endophytic nitrogen-fixing bacteria: untapped treasurer for agricultural sustainability. J Appl Biol Biotechnol 11(2):75–93

    Google Scholar 

  • Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H (2003) Colonization of pennycresses (Thlaspi sp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626

    Article  CAS  PubMed  Google Scholar 

  • Rouphael Y, Colla G (2018) Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci 9:1–24

    Article  Google Scholar 

  • Rouphael Y, Colla G (2020) Editorial: biostimulants in agriculture. Front Plant Sci 11:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M et al (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Rouphael Y, Cardarelli M, Bonini P, Colla G (2017) Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front Plant Sci 8:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael Y, Kyriacou MC, Colla G (2018a) Vegetable grafting: a toolbox for securing yield stability under multiple stress conditions. Front Plant Sci 8:2255

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael Y, Kyriacou MC, Petropoulos SA, De Pascale S, Colla G (2018b) Improving vegetable quality in controlled environments. Sci Hortic 234:275–289

    Article  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A et al (2012) Streptomyces spp. isolated from rhizosphere of Thai medicinal plants: antimicrobial, insecticidal and plant growth-promoting properties. World J Microbiol Biotechnol 28(2):594–605

    Google Scholar 

  • Russo VM (2006) Biological amendment, fertilizer rate, and irrigation frequency for organic bell pepper transplant production. Hortic Sci 41:1402–1407

    CAS  Google Scholar 

  • Russo RO, Berlyn GP (1991) The use of organic biostimulants to help low-input sustainable agriculture. J Sustain Agric 1:19–42

    Article  Google Scholar 

  • Ruzzi M, Aroca R (2015) Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci Hortic 196:124–134

    Article  CAS  Google Scholar 

  • Sales CR, Marchiori PER, Machado RS, Fontenele AV, Machado EC, Silveira JAG, Ribeiro RV (2015) Photosynthetic and antioxidant responses to drought during sugarcane ripening. Photosynthetica 53(4):547–554

    Article  CAS  Google Scholar 

  • Santamaria ME, Gonzalez-Fernandez R, Olmedo M, Rodriguez-Perez R, Ocampo JA (2020) Trichoderma harzianum T34 modifies the volatile profile and the bacterial community of Botrytis cinerea-infected grapes. Microorganisms 8(4):533

    Google Scholar 

  • Saravanakumar D, Muthumeena K, Lavanya N, Suresh S, Rajendran L, Raguchander T (2018) Bacillus spp. mediated synthesis of silver nanoparticles and its control of phytopathogenic Xanthomonas campestris pv. campestris and growth-promoting activity in chilli (Capsicum annuum). Microb Pathog 122:130–140

    Google Scholar 

  • Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer-Verlag, Berlin Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Selvam K, Selvankumar T, Rajiniganth R, Srinivasan P, Sudhakar C, Senthilkumar B et al (2016) Enhanced production of amylase from Bacillus sp. using groundnut shell and cassava waste as a substrate under process optimization: waste to wealth approach. Biocatal Agric Biotechnol 7:250–256

    Article  Google Scholar 

  • Sharma HSS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a view on the processing of macro algae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490

    Article  CAS  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2016) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 291(38):19637–19649

    Google Scholar 

  • Shubha K, Mukherjee A, Kumari M, Tiwari K, Meena VS (2017) Bio-stimulants: an approach towards the sustainable vegetable production. In: Agriculturally important microbes for sustainable agriculture, vol 259, p 277

    Google Scholar 

  • Singh N, Ma LQ, Srivastava M (2018) Antioxidant responses and metal accumulation in invasive plant species growing on mine tailings in Zimapán, Mexico. Int J Phytoremed 20(10):981–989

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis, 3rd edn. Academic Press

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Tanvere S, Akhtar N, Ilyas N, Sayyed RZ, Fitriatin BN, Parveen K, Bukhari NA (2023) Interactive effects of pseudomonas putida and salicylic acid for mitigating drought tolerance in canola (Brassica napus L.). Heliyon 9(3):e14193

    Article  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Verma SK, Kingsley KL, Bergen MS, Kowalski KP, White JF (2018) Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis. Microorganisms 6(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A et al (2020) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Microbiol Biotechnol 104(15):6501–6515

    Google Scholar 

  • Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P, Sayyed RZ (2022) Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Front Plant Sci 13:953836

    Article  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Xavier IJ, Boyetchko SM (2002) Arbuscular mycorrhizal fungi as biostimulants and bioprotectants of crops. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology, Agriculture and food production, vol 2. Elsevier, Amsterdam, pp 311–330

    Google Scholar 

  • Xu L, Geelen D (2018) Developing biostimulants from agro-food and industrial by-products. Front Plant Sci 9

    Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Zebelo S, Song Y, Kloepper JW, Fadamiro H (2016) Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). Plant Cell Environ 39(4):935–943

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Praveen, B.R. et al. (2024). Microbial Biostimulants: A Sustainable Approach Toward Potential Plant Nutrition and Improved Crop Production. In: Sayyed, R.Z., Ilyas, N. (eds) Plant Holobiome Engineering for Climate-Smart Agriculture. Sustainable Plant Nutrition in a Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-99-9388-8_12

Download citation

Publish with us

Policies and ethics