Skip to main content

Temporal and Spatial Processes and Dynamics of the Permian−Triassic Boundary Mass Extinction (PTBME) in South China

  • Chapter
  • First Online:
Stratigraphy Around the Permian–Triassic Boundary of South China

Abstract

The end-Permian mass extinction is the most severe biodiversity crisis during the Phanerozoic and the extinction process has long been debated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi N, Asada Y, Ezaki Y, Liu JB (2017) Stromatolites near the Permian−Triassic boundary in Chongyang, Hubei Province, South China: a geobiological window into palaeo-oceanic fluctuations following the end-Permian extinction. Palaeogeogr Palaeoclimatol Palaeoecol 475:55–69

    Article  Google Scholar 

  • Algeo TJ, Henderson CM, Ellwood B, Rowe H, Elswick E, Bates S, Lyons T, Hower JC, Smith C, Maynard B, Hays LE, Summons R, Fulton J, Freeman KH (2012) Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geol Soc Am Bull 124:1424–1448

    Article  Google Scholar 

  • Alroy J, Aberhan M, Bottjer DJ, Foote M, Fursich F, Harries PJ, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski T, Patzkowsky DME, Peters SE, Villier L, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Fall LM, Ferguson CA, Hanson VL, Krug AZ, Layou KM, Leckey EH, Nurnberg S, Powers CM, Sessa JA, Simpson C, Tomasovych A, Visaggi CC (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100

    Article  Google Scholar 

  • Baresel B, Bucher H, Bagherpour B, Brosse M, Kuang GD, Schaltegger U (2017) Timing of global regression and microbial bloom linked with the Permian−Triassic boundary mass extinction: implications for driving mechanisms. Sci Rep 7:43630.https://doi.org/10.1038/srep43630

  • Beauchamp B, Baud A (2002) Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeogr Palaeoclimatol Palaeoecol 184:37–63

    Article  Google Scholar 

  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Permian−Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533

    Article  Google Scholar 

  • Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664

    Article  Google Scholar 

  • Bond DPG, Wignall PB (2010) Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geol Soc Am Bull 122:1265–1279

    Article  Google Scholar 

  • Burger BJ, Estrada MV, Gustin MS (2019) What caused Earth’s largest mass extinction event? New evidence from the Permian−Triassic boundary in northeastern Utah. Glob Planet Change 177:81–100

    Article  Google Scholar 

  • Burgess SD, Bowring S (2015) High-precision geochronology confirms voluminous magmatism before, during, and after earth’s most severe extinction. Sci Adv 1:e1500470

    Article  Google Scholar 

  • Burgess SD, Bowring S, Shen SZ (2014) High-precision timeline for earth’s most severe extinction. Proc Natl Acad Sci 111:3316–3321

    Article  Google Scholar 

  • Burgess SD, Muirhead JD, Bowring SA (2017) Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat Commun 8:164.https://doi.org/10.1038/s41467-017-00083-9

  • Chen ZQ, Shi GR, Yang FQ, Gao YQ, Tong JN, Peng YQ (2006) An ecologically mixed brachiopod fauna from Changhsingian deep-water basin of South China: consequence of end-Permian global warming. Lethaia 39:79–90

    Article  Google Scholar 

  • Chen ZQ, Shi GR, Gao YQ, Tong JN, Yang FQ, Peng YQ (2009a) A late Changhsingian (latest Permian) deep-water brachiopod fauna from Guizhou, South China. Alcheringa 33:163–183

    Article  Google Scholar 

  • Chen ZQ, Tong JN, Zhang KX, Yang H, Liao ZT, Song HJ, Chen J (2009b) Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Aust J Earth Sci 56:775–797

    Article  Google Scholar 

  • Chen ZQ, Yang H, Luo M, Benton MJ, Kaiho K, Zhao LS, Huang YG, Zhang KX, Fang YH, Jiang HS, Qiu H, Li Y, Tu CY, Shi L, Zhang L, Feng XQ, Chen L (2015) Complete biotic and sedimentary records of the Permian−Triassic transition from Meishan section, South China: ecologically assessing mass extinction and its aftermath. Earth Sci Rev 149:63–103

    Article  Google Scholar 

  • Chen ZQ, Fang YH, Wignall PB, Guo Z, Su SQ, Liu ZL, Wang RQ, Huang YG, Feng XQ (2022) Microbial blooms triggered pyrite framboid enrichment and oxygen depletion in carbonate platforms immediately after the latest Permian extinction. Geophys Res Lett 49:e2021GL096998. https://doi.org/10.1029/2021GL096998

  • Chen J, Xu YG (2019) Establishing the link between Permian volcanism and biodiversity changes: insights from geochemical proxies. Gondwana Res 75:68–96

    Article  Google Scholar 

  • Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemueller F, Meixner A, Poulton SW, Tipper ET (2015) Ocean acidification and the Permo–Triassic mass extinction. Science 348:229–232

    Article  Google Scholar 

  • Cui Y, Li MS, van Soelen EE, Peterse F, Kürschner WM (2021) Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction. Proc Nat Acad Sci 118:e2014701118. https://doi.org/10.1073/pnas.2014701118

  • Davydov VI (2021) Tunguska coals, Siberian sills and the Permian−Triassic extinction. Earth Sci Rev 212:103438. https://doi.org/10.1016/j.earscirev.2020.103438

  • Davydov VI, Karasev EV, Nurgalieva NG, Schmitz MD, Budnikov IV, Biakov AS, Kuzina DN, Silantiev VV, Urazaeva MN, Zharinova VV, Zorina SO, Gareev B, Vasilenko DV (2021) Climate and biotic evolution during the Permian−Triassic transition in the temperate Northern Hemisphere, Kuznetsk Basin, Siberia, Russia. Palaeogeogr Palaeoclimatol Palaeoecol 573:110432. https://doi.org/10.1016/j.palaeo.2021.110432

  • Dittert N, Henrich R (2000) Carbonate dissolution in the South Atlantic Ocean: evidence from ultrastructure breakdown in Globigerina bulloides. Deep-Sea Research I 47:603–620

    Article  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Article  Google Scholar 

  • Edmond JM, Huh Y (2003) Non-steady state carbonate recycling and implications for the evolution of atmospheric pCO2. Earth Planet Sci Lett 216:125–139

    Article  Google Scholar 

  • Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York, p 327

    Google Scholar 

  • Fan JX, Shen SZ, Erwin DH, Sadler PM, MacLeod N, Cheng QM, Hou XD, Yang J, Wang DX, Wang Y, Zhang H, Chen X, Xiang G, Zhang YC, Shi YK, Yuan DX, Chen Q, Zhang LN, Li C, Zhao YY (2020) A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367:272–277

    Article  Google Scholar 

  • Fang Q, Hong HL, Chen ZQ, Yu JX, Wang CW, Yin K, Zhao LL, Liu Z, Cheng F, Gong NN, Furnes H (2017) Microbial proliferation coinciding with volcanism during the Permian−Triassic transition: new, direct evidence from volcanic ashes, South China. Palaeogeogr Palaeoclimatol Palaeoecol 474:164–186

    Article  Google Scholar 

  • Farley KA, Mukhopadhyay S (2001) An Extraterrestrial Impact at the Permian−Triassic boundary? Science 293:2343.https://doi.org/10.1126/science.293.5539.2343a

  • Feng QL, Algeo TJ (2014) Evolution of oceanic redox conditions during the Permo–Triassic: evidence from radiolarian deepwater facies. Earth-Sci Rev 137:34–51

    Article  Google Scholar 

  • Fielding CR, Frank TD, McLoughlin S, Vajda V, Mays C, Tevyaw AP, Winguth A, Winguth C, Nicoll RS, Bocking M, Crowley JL (2019) Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat Commun 10:385.https://doi.org/10.1038/s41467-018-07934-z

  • Foster WJ, Heindel K, Richoz S, Gliwa J, Lehrmann DJ, Baud A, Kolar-Jurkovšek T, Aljinović D, Jurkovšek B, Korn D, Martindale RC, Peckmann J (2020) Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites. Deposition Rec 6:62–74

    Article  Google Scholar 

  • Foster WJ, Hirtz JA, Farrell C, Reistroffer M, Twitchett RJ, Martindale RC (2022) Bioindicators of severe ocean acidification are absent from the end-Permian mass extinction. Sci Rep 12:1202.https://doi.org/10.1038/s41598-022-04991-9

  • Frogner P, Gislason SR, Óskarsson N (2001) Fertilizing potential of volcanic ash in ocean surface water. Geology 29:487–490

    Article  Google Scholar 

  • Garbelli C, Angiolini L, Shen SZ (2017) Biomineralization and global change: a new perspective for understanding the end-Permian extinction. Geology 45:19–22

    Article  Google Scholar 

  • Gastaldo RA, Kamo SL, Neveling J, Geissman JW, Looy CV, Martini AM (2020) The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction. Nat Commun 11:1428.https://doi.org/10.1038/s41467-020-15243-7

  • Georgiev SV, Stein HJ, Yang G, Hannah JL, Böttcher ME, Grice K, Holman AI, Turgeon S, Simonsen S, Cloquet C (2020) Late Permian−Early Triassic environmental changes recorded by multi-isotope (Re−Os−N−Hg) data and trace metal distribution from the Hovea-3 section, Western Australia. Gondwana Res 88:353–372

    Article  Google Scholar 

  • Ghosh N, Basu AR, Bhargava ON, Shukla UK, Ghatak A, Garzione CN, Ahluwalia AD (2016) Catastrophic environmental transition at the Permian−Triassic Neo-Tethyan margin of Gondwanaland: geochemical, isotopic and sedimentological evidence in the Spiti Valley, India. Gondwana Res 34:324–345

    Article  Google Scholar 

  • Grasby SE, Shen WJ, Yin RS, Gleason JD, Blum JD, Lepak RF, Hurley JP, Beauchamp B (2017) Isotopic signatures of mercury contamination in latest Permian oceans. Geology 45:55–58

    Article  Google Scholar 

  • Grasby SE, Bond DPG, Wignall PB, Yin R, Strachan LJ, Takahashi S (2021) Transient Permian−Triassic euxinia in the southern Panthalassa deep ocean. Geology 49:889–893

    Article  Google Scholar 

  • Grice K, Cao CQ, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin YG (2005) Photic zone euxinia during the Permian−Triassic superanoxic event. Science 307:706–709

    Article  Google Scholar 

  • Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250

    Article  Google Scholar 

  • He WH, Shi GR, Feng QL, Campi MJ, Gu SZ, Bu JJ, Peng YQ, Meng YY (2007) Brachiopod miniaturization and its possible causes during the Permian−Triassic crisis in deep water environments, South China. Palaeogeogr Palaeoclimatol Palaeoecol 252:145–163

    Article  Google Scholar 

  • He WH, Zhang Y, Zheng YE, Zhang KX, Gui BW, Feng QL (2008) Late Changhsingian (latest Permian) radiolarian fauna from Chaohu, Anhui and a comparison with its contemporary faunas of South China. Alcheringa 32:199–222

    Article  Google Scholar 

  • He WH, Zhang Y, Zhang Q, Zhang KX, Yuan AH, Feng QL (2011) A latest Permian radiolarian fauna from Hushan, South China and its geological implications. Alcheringa 35:471–496

    Article  Google Scholar 

  • He WH, Shi GR, Zhang Y, Yang TL, Zhang KX, Wu SB, Niu ZJ, Zhang ZY (2014) Changhsingian (latest Permian) deep-water brachiopod fauna from South China. J Syst Paleontol 12:907–960

    Article  Google Scholar 

  • He WH, Shi GR, Twitchett RJ, Zhang Y, Zhang KX, Song HJ, Yue ML, Wu SB, Wu HT, Yang TL, Xiao YF (2015a) Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology 13:123–138

    Article  Google Scholar 

  • He WH, Zhang KX, Wu SB, Feng QL, Yang TL, Yue ML, Xiao YF, Wu HT, Zhang Y, Wang GD, Chen B (2015b) End-Permian faunas from Yangtze basin and its marginal region: implications for palaeogeographical and tectonic environments. Earth Sci J China Univ Geosci 40:275–289 [In Chinese with English abstract]

    Google Scholar 

  • He WH, Shi GR, Xiao YF, Zhang KX, Yang TL, Wu HT, Zhang Y, Chen B, Yue ML, Shen J, Wang YB, Yang H, Wu SB (2017) Body-size changes of latest Permian brachiopods in varied palaeogeographic settings in South China and implications for controls on animal miniaturization in a highly stressed marine ecosystem. Palaeogeogr Palaeoclimatol Palaeoecol 486:33–45

    Article  Google Scholar 

  • He WH, Shi GR, Zhang KX, Yang TL, Shen SZ, Zhang Y (2019) Brachiopods around the Permian–Triassic boundary of South China. Springer, Singapore, 261 pp

    Google Scholar 

  • He WH, Weldon EA, Yang TL, Wang H, Xiao YF, Wu HT, Zhang KX, Wang YB, Wu SB (2020) The palaeoenvironmental and palaeobiogeographical significance of the Late Permian deep-water brachiopod fauna from Dongpan, South China, including descriptions of Micromartinia He & Weldon gen. nov. (Micromartiniidae He & Weldon fam. nov.) and Minutomarginifera nom. nov. J Syst Paleontol 18:885–909

    Article  Google Scholar 

  • Hinojosa JL, Brown ST, Chen J, DePaolo DJ, Paytan A, Shen SZ, Payne JL (2012) Evidence for end-Permian ocean acidifi cation from calcium isotopes in biogenic apatite. Geology 40:743–746

    Article  Google Scholar 

  • Hoffmann LJ, Breitbarth E, Ardelan MV, Duggen S, Olgun N, Hassellöv M, Wängberg SÄ (2012) Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi. Mar Chem 132–133:28–33

    Article  Google Scholar 

  • Hu ZY, Li WQ, Zhang H, Krainer K, Zheng QF, Xia ZG, Hu WX, Shen SZ (2021) Mg isotope evidence for restriction events within the Paleotethys ocean around the Permian−Triassic transition. Earth Planet Sci Lett 556:116704. https://doi.org/10.1016/j.epsl.2020.116704

  • Huang YF, He WH, Liao W, Wang YB, Yi ZX, Yang H (2022) Two pulses of increasing terrestrial input to marine environment during the Permian−Triassic transition. Palaeogeogr Palaeoclimatol Palaeoecol 586:110753. https://doi.org/10.1016/j.palaeo.2021.110753

  • Immenhauser A (2009) Estimating palaeo-water depth from the physical rock record. Earth Sci Rev 96:107–139

    Article  Google Scholar 

  • Isozaki Y, Shimizu N, Yao JX, Ji ZS, Matsuda T (2007) End-Permian extinction and volcanism-induced environmental stress: the Permian−Triassic boundary interval of lower-slope facies at Chaotian, South China. Palaeogeogr Palaeoclimatol Palaeoecol 252:218–238

    Article  Google Scholar 

  • Isozaki Y (1997) Permo–Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235–238

    Article  Google Scholar 

  • Isozaki Y (2009) Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic−Mesozoic transition: The G−LB and P−TB events from a Panthalassan perspective. J Asian Earth Sci 36:459–480

    Article  Google Scholar 

  • Jensen MM, Petersen J, Dalsgaard T, Thamdrup B (2009) Pathways, rates, and regulation of N2 production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. Mar Chem 113:102–113

    Article  Google Scholar 

  • Jiang L, Cai CF, Xiang L, Fan JX, Li KK, Cai LL, Algeo TJ, Zhang FF (2022) Kerogen-specific isotope variations during the end-Permian mass extinction in South China. Earth Sci Rev 226:103912. https://doi.org/10.1016/j.earscirev.2021.103912

  • Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000) Pattern of marine mass extinction near the Permian−Triassic boundary in South China. Science 289:432–436

    Article  Google Scholar 

  • Joachimski MM, Lai XL, Shen SZ, Jiang HS, Luo GM, Chen B, Chen J, Sun YD (2012) Climate warming in the latest Permian and the Permian−Triassic mass extinction. Geology 40:195–198

    Article  Google Scholar 

  • Joachimski MM, Alekseev AS, Grigoryan A, Gatovsky YA (2020) Siberian Trap volcanism, global warming and the Permian−Triassic mass extinction: new insights from Armenian Permian−Triassic sections. Geol Soc Am Bull 132:427–443

    Article  Google Scholar 

  • Jurikova H, Gutjahr M, Wallmann K, Flögel S, Liebetrau V, Posenato R, Angiolini L, Garbelli C, Brand U, Wiedenbeck M, Eisenhauer A (2020) Permian−Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nat Geosci 13:745–750

    Article  Google Scholar 

  • Kaiho K, Kajiwara Y, Nakano T, Miura Y, Kuwahata H, Tazaki K, Ueshima M, Chen ZQ, Shi GR (2001) End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29:815–818

    Article  Google Scholar 

  • Kaiho K, Aftabuzzaman M, Jones DS, Tian L (2021) Pulsed volcanic combustion events coincident with the end-Permian terrestrial disturbance and the following global crisis. Geology 49:289–293

    Article  Google Scholar 

  • Kozur H (1993) Upper Permian radiolarians from the Sosio Valley Area, Western Sicily (Italy) and from the uppermost Lamar limestone of West Texas. Jahrbuch Der Geologischen Bundesanstalt Wien 136:99–123

    Google Scholar 

  • Kump L (2018) Climate change and marine mass extinction. Science 362:1113–1114

    Article  Google Scholar 

  • Kump LR, Pavlov A, Arthur MA (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397–400

    Article  Google Scholar 

  • Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol Annu Rev 41:1–45

    Google Scholar 

  • Li GS, Wang YB, Shi GR, Liao W, Yu LX (2016) Fluctuations of redox conditions across the Permian−Triassic boundary—new evidence from the GSSP section in Meishan of South China. Palaeogeogr Palaeoclimatol Palaeoecol 448:48–58

    Article  Google Scholar 

  • Li GS, Liao W, Li S, Wang YB, Lai ZP (2021) Different triggers for the two pulses of mass extinction across the Permian and Triassic boundary. Sci Rep 11:6686.https://doi.org/10.1038/s41598-021-86111-7

  • Liao ZT (1979) Brachiopod assemblage zone of Changhsing stage and brachiopods from Permo–Triassic boundary beds in China. Acta Stratigraphica Sinica 3:200–208 [in Chinese]

    Google Scholar 

  • Liao ZT (1984) New genus and species of Late Permian and earliest Triassic brachiopods from Jiangsu, Zhejiang and Anhui Provinces. Acta of Palaeontologica Sinica 23:276–285 [in Chinese, with English abstract]

    Google Scholar 

  • Liu SA, Wu HC, Shen SZ, Jiang GQ, Zhang SH, Lv YW, Zhang H, Li SG (2017) Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction. Geology 45:343–346

    Article  Google Scholar 

  • Liu ZY, Selby D, Zhang H, Shen SZ (2020) Evidence for volcanism and weathering during the Permian−Triassic mass extinction from Meishan (South China) osmium isotope record. Palaeogeogr Palaeoclimatol Palaeoecol 553:109790. https://doi.org/10.1016/j.palaeo.2020.109790

  • Mahowald NM, Hamilton DS, Mackey KRM, Moore JK, Baker AR, Scanza RA, Zhang Y (2018) Aerosol trace metal leaching and impacts on marine microorganisms. Nat Commun 9:2614.https://doi.org/10.1038/s41467-018-04970-7

  • Mays C, Vajda V, Frank TD, Fielding CR, Nicoll RS, Tevyaw AP, McLoughlin S (2020) Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. Geol Soc Am Bull 132:1489–1513

    Article  Google Scholar 

  • Nabbefeld B, Grice K, Twitchett RJ, Summons RE, Hays L, Böttcher ME, Asif M (2010) An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth Planet Sci Lett 291:84–96

    Article  Google Scholar 

  • Olsson J, Stipp SLS, Dalby KN, Gislason SR (2013) Rapid release of metal salts and nutrients from the 2011 Grímsvötn, Iceland volcanic ash. Geochim Cosmochim Acta 123:134–149

    Article  Google Scholar 

  • Onoue T, Takahata N, Miura M, Sato H, Ishikawa A, Soda K, Sano Y, Isozaki Y (2019) Enhanced flux of extraterrestrial 3He across the Permian–Triassic boundary. Progr Earth Planet Sci 6:18.https://doi.org/10.1186/s40645-019-0267-0

  • Petrash DA, Gingras MK, Lalonde SV, Orange F, Pecoits E, Konhauser KO (2012) Dynamic controls on accretion and lithification of modern gypsum-dominated thrombolites, Los Roques, Venezuela. Sed Geol 245–246:29–47

    Article  Google Scholar 

  • Raup DM (1986) Biological extinction in Earth history. Science 231:1528–1533

    Article  Google Scholar 

  • Regelous M, Regelous A, Grasby SE, Bond DPG, Haase KM, Gleiβner S, Wignall PB (2020) Tellurium in Late Permian−Early Triassic sediments as a proxy for Siberian flood basalt volcanism. Geochem Geophys Geosyst 21:e2020GC009064. https://doi.org/10.1029/2020GC009064

  • Renne PR, Basu AR (1991) Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science 253:176–179

    Article  Google Scholar 

  • Retallack GJ, Jahren AH (2008) Methane release from igneous intrusion of coal during Late Permian extinction events. J Geol 116:1–20

    Article  Google Scholar 

  • Retallack GJ (2021) Multiple Permian−Triassic life crises on land and at sea. Glob Planet Change 198:103415. https://doi.org/10.1016/j.gloplacha.2020.103415

  • Sano H, Wada T, Naraoka H (2012) Late Permian to Early Triassic environmental changes in the Panthalassic Ocean: record from the seamount-associated deep-marine siliceous rocks, central Japan. Palaeogeogr Palaeoclimatol Palaeoecol 363–364:1–10

    Article  Google Scholar 

  • Sepkoski JJ (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:36–53

    Article  Google Scholar 

  • Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen YA, Wang XD, Wang W, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG (2011a) Calibrating the end-Permian mass extinction. Science 334:1367–1372

    Article  Google Scholar 

  • Shen YA, Farquhar J, Zhang H, Masterson A, Zhang TG, Wing BA (2011) Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat Commun 2:210.https://doi.org/10.1038/ncomms1217

  • Shen J, Algeo TJ, Zhou L, Feng QL, Yu JX, Ellwood B (2012) Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects. Geobiology 10:82–103

    Article  Google Scholar 

  • Shen J, Yu JX, Chen JB, Algeo TJ, Xu GZ, Feng QL, Shi X, Planavsky NJ, Shu WC, Xie SC (2019a) Mercury evidence of intense volcanic effects on land during the Permian−Triassic transition. Geology 47:1117–1121

    Article  Google Scholar 

  • Shen J, Chen JB, Algeo TJ, Yuan SL, Feng QL, Yu JX, Zhou L, O’Connell B, Planavsky NJ (2019b) Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records. Nat Commun 10:1563https://doi.org/10.1038/s41467-019-09620-0

  • Shen SZ, Ramezani J, Chen J, Cao CQ, Erwin DH, Zhang H, Xiang L, Schoepfer SD, Henderson CM, Zheng QF, Bowring SA, Wang Y, Li XH, Wang XD, Yuan DX, Zhang YC, Mu L, Wang J, Wu YS (2019c) A sudden end-Permian mass extinction in South China. Geol Soc Am Bull 131:205–223

    Article  Google Scholar 

  • Shen J, Chen JB, Algeo TJ, Feng QL, Yu JX, Xu YG, Xu GZ, Lei Y, Planavsky NJ, Xie SC (2021) Mercury fluxes record regional volcanism in the South China craton prior to the end-Permian mass extinction. Geology 49:452–456

    Article  Google Scholar 

  • Shen J, Chen JB, Yu JX, Algeo TJ, Smith RMH, Botha J, Frank TD, Fielding CR, Ward PD, Mather TA (2023) Mercury evidence from southern Pangea terrestrial sections for end-Permian global volcanic effects. Nat Commun 14:6. https://doi.org/10.1038/s41467-022-35272-8

    Article  Google Scholar 

  • Sial AN, Chen JB, Lacerda LD, Korte C, Spangenberg JE, Silva-Tamayo JC, Gaucher C, Ferreira VP, Barbosa JA, Pereira NS, Benigno AP (2020) Globally enhanced Hg deposition and Hg isotopes in sections straddling the Permian−Triassic boundary: link to volcanism. Palaeogeogr Palaeoclimatol Palaeoecol 540:109537.https://doi.org/10.1016/j.palaeo.2019.109537

  • Silva-Tamayo JC, Lau KV, Jost AB, Payne JL, Wignall PB, Newton RJ, Eisenhauer A, Depaolo DJ, Brown S, Maher K, Lehrmann DJ, Altiner D, Yu MY, Richoz S, Paytan A (2018) Global perturbation of the marine calcium cycle during the Permian−Triassic transition. Geol Soc Am Bull 130:1323–1338

    Google Scholar 

  • Song HJ, Tong JN, Chen ZQ (2009) Two episodes of foraminiferal extinction near the Permian–Triassic at the Meishan section, South China. Aust J Earth Sci 56:765–773

    Article  Google Scholar 

  • Song HJ, Wignall PB, Tong JN, Yin HF (2013) Two pulses of extinction during the Permian–Triassic crisis. Nat Geosci 6:52–56

    Article  Google Scholar 

  • Song HJ, Wignall PB, Song HY, Dai X, Chu DL (2019) Seawater temperature and dissolved oxygen over the past 500 million years. J Earth Sci 30:236–243

    Article  Google Scholar 

  • Sun YD, Joachimski MM, Wignall PB, Yan CB, Chen YL, Jiang HS, Wang LN, Lai XL (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370

    Article  Google Scholar 

  • Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490–500

    Article  Google Scholar 

  • Takahashi S, Yamakita S, Suzuki N, Kaiho K, Ehiro M (2009) High organic carbon content and a decrease in radiolarians at the end of the Permian in a newly discovered continuous pelagic section: a coincidence? Palaeogeogr Palaeoclimatol Palaeoecol 271:1–12

    Article  Google Scholar 

  • Takahashi S, Kaiho K, Hori RS, Gorjan P, Watanabe T, Yamakita S, Aita Y, Takemura A, Spörli KB, Kakegawa T, Oba M (2013) Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian−Triassic transition. Glob Planet Change 105:68–78

    Article  Google Scholar 

  • Takahashi S, Nakada R, Watanabe Y, Takahashi Y (2019) Iron-depleted pelagic water at the end-Permian mass extinction inferred from chemical species of iron and molybdenum in deep-sea sedimentary rocks. Palaeogeogr Palaeoclimatol Palaeoecol 516:384–399

    Article  Google Scholar 

  • Takahashi S, Hori RS, Yamakita S, Aita Y, Takemura A, Ikehara M, Xiong YJ, Poulton SW, Wignall PB, Itai T, Campbell HJ, Spörli BK (2021) Progressive development of ocean anoxia in the end-Permian pelagic Panthalassa. Glob Planet Change 207:103650. https://doi.org/10.1016/j.gloplacha.2021.103650

  • Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian mass extinction event. Geology 29:351–354

    Article  Google Scholar 

  • Wang Y, Shen SZ, Zhang YC, Wang XD, Wang W, Sadler PM, Erwin DH, Crowley JL, Henderson CM (2014) Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 41:113–129

    Article  Google Scholar 

  • Wang XD, Cawood PA, Zhao LS, Chen ZQ, Lyu ZY, Ma B (2019) Convergent continental margin volcanic source for ash beds at the Permian−Triassic boundary, South China: constraints from trace elements and Hfisotopes. Palaeogeogr Palaeoclimatol Palaeoecol 519:154–165

    Article  Google Scholar 

  • Wang H, He WH, Xiao YF, Yang TL, Zhang KX, Wu HT, Huang YF, Peng XF, Wu SB (2023) Stepwise collapse of biotic communities and its relations to oxygen depletion along the north margin of during the Permian–Triassic transition. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2023.111569

  • Weber ME, Pisias NG (1999) Spatial and temporal distribution of biogenic carbonate and opal in deep-sea sediments from the eastern equatorial Pacific: implications for ocean history since 1.3Ma. Earth Planet Sci Lett 174:59–73

    Article  Google Scholar 

  • Weber ME, von Stackelberg U (2000) Variability of surface sediments in the Peru Basin: dependence on water depth, productivity, bottom water flow, and seafloor topography. Mar Geol 163:169–184

    Article  Google Scholar 

  • Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian–Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr Palaeoclimatol Palaeoecol 93:21–46

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158

    Article  Google Scholar 

  • Wu YS (2017) A latest Permian non-reef calcisponge fauna from Laibin, Guangxi, southern China and its significance. J Palaeogeogr 6:60–68

    Article  Google Scholar 

  • Wu SB, Wei M, Zhang KX (1986) Facies changes and controlling factors of the Late Permian Changxing limestone in the Changxing area. Geol Rev 32:419–425 [in Chinese with English abstract]

    Google Scholar 

  • Wu HT, He WH, Shi GR, Zhang KX, Yang TL, Zhang Y, Xiao YF, Chen B, Wu SB (2018a) A new Permian-Triassic boundary brachiopod fauna from the Xinmin section, southwestern Guizhou, south China and its extinction patterns. Alcheringa 42:339–372

    Article  Google Scholar 

  • Wu HT, He WH, Weldon EA (2018b) Prelude of benthic community collapse during the end-Permian mass extinction in siliciclastic offshore sub-basin: Brachiopod evidence from South China. Glob Planet Change 163:158–170

    Article  Google Scholar 

  • Wu BJ, Luo GM, Joachimski MM, Wignall PB, Lei LD, Huang JH, Lai XL (2021) Carbon and nitrogen isotope evidence for widespread presence of anoxic intermediate waters before and during the Permian−Triassic mass extinction. Geol Soc Am Bull 134:1397–1413

    Article  Google Scholar 

  • Xiang L, Schoepfer SD, Zhang H, Yuan DX, Cao CQ, Zheng QF, Henderson CM, Shen SZ (2016) Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China. Palaeogeogr Palaeoclimatol Palaeoecol 448:59–71

    Google Scholar 

  • Xiang L, Schoepfer SD, Yuan DX, Zheng QF, Zhang H (2022) Oceanic redox evolution across the end-Permian mass extinction at Penglaitan section, South China. Palaeoworld 31:93–102

    Article  Google Scholar 

  • Xiao YF, Suzuki N, He WH (2017) Water depths of the latest Permian (Changhsingian) radiolarians estimated from correspondence analysis. Earth Sci Rev 173:141–158

    Article  Google Scholar 

  • Xie SC, Algeo TJ, Zhou WF, Ruan XY, Luo GM, Huang JH, Yan JX (2017) Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries. Earth Planet Sci Lett 460:180–191

    Article  Google Scholar 

  • Xiong CH, Wang JS, Huang P, Cascales-Miñana B, Cleal CJ, Benton MJ, Xue JZ (2021) Plant resilience and extinctions through the Permian to Middle Triassic on the North China block: a multilevel diversity analysis of macrofossil records. Earth Sci Rev 223:103846. https://doi.org/10.1016/j.earscirev.2021.103846

  • Yang ZY, Yin HF, Wu SB, Yang FQ, Ding MH, Xu GR (1987) Permian–Triassic Boundary Stratigraphy and Fauna of South China. Geological Publishing House, Beijing, 378 pp [in Chinese with English abstract]

    Google Scholar 

  • Yang ZY, Wu SB, Yin HF, Xu GR, Zhang KX (1991) Permo–Triassic events of South China. Geological Publishing House, Beijing, 183 pp [in Chinese with English abstract]

    Google Scholar 

  • Yin HF, Feng QL, Lai XL, Baud A, Tong JN (2007) The protracted Permo–Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Glob Planet Change 55:1–20

    Article  Google Scholar 

  • Yin HF, Jiang HS, Xia WC, Feng QL, Zhang N, Shen J (2014) The end-Permian regression in South China and its implication on mass extinction. Earth Sci Rev 137:19–33

    Article  Google Scholar 

  • Zhang KX, Tong JN, Yin HF, Wu SB (1997) Sequence stratigraphy of the Permian−Triassic boundary section of Changxing, Zhejiang, southern China. Acta Geol Sin 71:90–103

    Article  Google Scholar 

  • Zhang H, Cao CQ, Liu XL, Mu L, Zheng QF, Liu F, Xiang L, Liu LJ, Shen SZ (2016) The terrestrial end-Permian mass extinction in South China. Palaeogeogr Palaeoclimatol Palaeoecol 448:108–124

    Article  Google Scholar 

  • Zhang Y, Shi GR, Wu HT, Yang TL, He WH, Yuan AH, Lei Y (2017) Community replacement, ecological shift and early warning signals prior to the end-Permian mass extinction: a case study from a nearshore clastic-shelf section in South China. Palaeogeogr Palaeoclimatol Palaeoecol 487:118–135

    Article  Google Scholar 

  • Zhang FF, Shen SZ, Cui Y, Lenton TM, Dahl TW, Zhang H, Zheng QF, Wang WQ, Krainer K, Anbar AD (2020) Two distinct episodes of marine anoxia during the Permian−Triassic crisis evidenced by uranium isotopes in marine dolostones. Geochim Cosmochim Acta 287:165–179

    Article  Google Scholar 

  • Zhang H, Zhang FF, Chen JB, Erwin DH, Syverson DD, Ni P, Rampino M, Chi Z, Cai YF, Xiang L, Li WQ, Liu SA, Wang RC, Wang XD, Feng Z, Li HM, Zhang T, Cai HM, Zheng W, Cui Y, Zhu XK, Hou ZQ, Wu FY, Xu YG, Planavsky N, Shen SZ (2021) Felsic volcanism as a factor driving the end-Permian mass extinction. Sci Adv 7.https://doi.org/10.1126/sciadv.abh1390

  • Zhao TY, Algeo TJ, Feng QL, Zi JW, Xu GZ (2019) Tracing the provenance of volcanic ash in Permian−Triassic boundary strata, South China: Constraints from inherited and syn-depositional magmatic Zircons. Palaeogeogr Palaeoclimatol Palaeoecol 516:190–202

    Article  Google Scholar 

  • Zhou L, Kyte FT (1988) The Permian−Triassic boundary event: a geochemical study of three Chinese sections. Earth Planet Sci Lett 90:411–421

    Article  Google Scholar 

  • Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B (2001) Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar Chem 74:29–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, WH., Shi, G.R., Zhang, KX., Suzuki, N., Wang, H., Zhang, XH. (2023). Temporal and Spatial Processes and Dynamics of the Permian−Triassic Boundary Mass Extinction (PTBME) in South China. In: He, Wh., et al. Stratigraphy Around the Permian–Triassic Boundary of South China. New Records of the Great Dying in South China. Springer, Singapore. https://doi.org/10.1007/978-981-99-9350-5_5

Download citation

Publish with us

Policies and ethics