Skip to main content

The Equity Fund Risk Predictions Via Quantum-Classical Hybrid Neural Networks

  • Conference paper
  • First Online:
Proceedings of the 13th International Conference on Computer Engineering and Networks (CENet 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1126))

Included in the following conference series:

  • 110 Accesses

Abstract

Among the recent studies on the use of machine learning methods to study fund stocks, there are few studies on the use of quantum-classical hybrid models. In this paper, we investigate the application of a quantum-classical hybrid neural network algorithm in equity fund risk prediction. Specifically, we evaluate the performance of quantum-classical hybrid neural networks for stock fund risk prediction. In our experiments, we collected historical data from several stock fund portfolios. And then, we use the collected data to do the appropriate processing and encode the feature data onto quantum states. Subsequently, we utilized the proposed quantum-classical hybrid neural network to predict the risk indices of the funds. We measure the performance and accuracy of the model by calculating and counting the mean square error of the prediction results against the actual results of the test set, as predicted by the above algorithm. The experimental results show that the quantum-classical hybrid neural network proposed in this paper can achieve better risk prediction for stock funds, that is, the model can capture the nonlinearity between the input features of stock data and risk indices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hilbert, M., Lopez, P.: The world’s technological capacity to store, communicate, and compute information. Science 332(6025), 60–65 (2011)

    Article  Google Scholar 

  2. Knutha, T. (Knutha, Tobias), Ahrholdtb, C.: Consumer fraud in online shopping: detecting risk indicators through data mining. Int. J. Electron. Commer. 26(3), 388–411 (2022)

    Google Scholar 

  3. Wu, Y., Li, X., Qingquan, Liu., Guangji, T.: The analysis of credit risks in agricultural supply chain finance assessment model based on genetic algorithm and backpropagation neural network. Comput. Econ. 60(4), 1269–1292 (2022)

    Google Scholar 

  4. Zhang, D., Lou, S.: The application research of neural network and BP algorithm in stock price pattern classification and prediction. Futur. Gener. Comput. Syst. Inter. J. Esci. 115(3), 872–879 (2021)

    Article  Google Scholar 

  5. Kevin, D.: The extreme value approaeh to VaR-anintroduction. Finaneialkl, Engineering News (1999)

    Google Scholar 

  6. Li, H.Y., Cao, H.H., Pan, X.Y.: The value at risk and empirical analysis. J. Anqing Norm. Univ. (Nat. Sci. Ed.) 21(1), 23–26 (2015)

    Google Scholar 

  7. Bradley, S.P.: Review of elements of financial risk management, by Peter F. Christoffersen (Second edition, Academic Press, 2011). Int. Rev. Econ. Financ. 25 (2013)

    Google Scholar 

  8. Li, Y.Z., Wang, H.M.: Portfolio risk analysis based on Monte Carlo simulation. New Economy 17, 38 (2016)

    Google Scholar 

  9. Kolajo, T., Daramola, O., Adebiyi, A.: Big data stream analysis: a systematic literature review. 6(1), 47 (2019)

    Google Scholar 

  10. Sokolov, I.A.: Theory and practice of application of artificial intelligence methods. Her. Russ. Acad. Sci. 89(2), 115–119 (2019)

    Article  Google Scholar 

  11. Huck, N.: Large data sets and machine learning: applications to statistical arbitrage. Eur. J. Oper. Res. 278(1), 330–342 (2019)

    Article  MathSciNet  Google Scholar 

  12. Benton, W.C.: Machine learning systems and intelligent applications. IEEE Softw. 37(4), 43–49 (2020)

    Article  MathSciNet  Google Scholar 

  13. Alsahaf, H., et al.: A survey on evolutionary machine learning [J]. J. R. Soc. N. Z. 49(2), 205–228 (2019)

    Article  Google Scholar 

  14. Pei, Y.T., Huang, Y.P., Zou, Q., Zhang, X.Y., Wang, S.: Effects of image degradation and degradation removal to CNN-based image classification. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1239–1253 (2021)

    Article  Google Scholar 

  15. Sang, B (Sang, Bin). Application of genetic algorithm and BP neural network in supply chain finance under information sharing[J]. Jouranl of Computational and Applied Mathematics, 2021, 384(4)

    Google Scholar 

  16. Owczarek, R.: Quantum mechanics for quantum computing. In: Proceedings of the Knot Theory and its Applications to Physics and Quantum Computing Conference, Dallas, TX, Univ Texas, vol. 25, issue 3, p. 1640009 (2015)

    Google Scholar 

  17. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)

    Article  Google Scholar 

  18. Saini, S., Khosla, P.K., Kaur, M., Singh, G.: Quantum driven machine learning. Int. J. Theor. Phys. 59(12), 4013–4024 (2020)

    Article  Google Scholar 

  19. Abe, M., Nakayama, H.: Deep learning for forecasting stock returns in the cross section. In: Pacifific-Asia Conference on Knowledge Discovery and Data Mining, pp. 273–284. Springer (2018)

    Google Scholar 

  20. Chinco, A., Clark-Joseph, A.D., Ye, M.: Sparse signals in the cross-section of returns. J. Financ. 74(1), 449–492 (2019)

    Article  Google Scholar 

  21. Dixon, M., Polson, N.: Deep fundamental factor models. SIAM J. Financ. Math. 11(3), SC26–SC37 (2020)

    Google Scholar 

  22. Gu, S., Kelly, B., Xiu, D.: Empirical asset pricing via machine learning. Rev. Financ. Stud. 33(2), 2223–2273 (2020)

    Google Scholar 

  23. Gu, S., Kelly, B., Xiu, D.: Autoencoder asset pricing models. J. Econ. 222(1), 429–450 (2021)

    Article  MathSciNet  Google Scholar 

  24. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)

    Article  Google Scholar 

  25. Cerezo, M., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021)

    Article  Google Scholar 

  26. Suimon, Y., Sakaji, H., Izumi, K., Shimada, T., Matsushima, H.: Japanese interest rate forecast considering the linkage of global markets using machine learning methods. Int. J. Smart Comput. Artif. Intell. 4(5), 1–17 (2020)

    Google Scholar 

  27. Poh, D., Lim, B., Zohren, S., Roberts, S.: Enhancing cross-sectional currency strategies by context-aware learning to rank with self-attention. J. Financ. Data Sci. 4(3), 89–107 (2022)

    Article  Google Scholar 

  28. Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE 12(7), e0180944 (2017)

    Article  Google Scholar 

  29. Kim, S.: Enhancing the momentum strategy through deep regression. Quant. Financ. 19(7), 1121–1133 (2019)

    Article  MathSciNet  Google Scholar 

  30. Lim, B., Zohren, S., Roberts, S.: Enhancing time-series momentum strategies using deep neural networks. J. Financ. Data Sci. 1(4), 19–38 (2019)

    Article  Google Scholar 

  31. Duan, J., Kashima, H.: Learning to rank for multi-step ahead time-series forecasting. IEEE Access 9, 49372–49386 (2021)

    Article  Google Scholar 

  32. Takaki, Y., Mitarai, K., Negoro, M., Fujii, K., Kitagawa, M.: Learning temporal data with a variational quantum recurrent neural network. Phys. Rev. A 103(5), 052414 (2021)

    Article  Google Scholar 

  33. Bausch, J.: Recurrent quantum neural networks. Adv. Neural. Inf. Process. Syst. 33, 1368–1379 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinsheng Zhu .

Editor information

Editors and Affiliations

Ethics declarations

This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202210); Chengdu Innovation and Technology Project, No. 2021-YF09-00114-GX; The Research on key technologies of complex image processing based on quantum-generated adversarial networks which is the key research of Sichuan Province in 2022, the project number is 2022YFG0315.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P., Zhu, Q., Wu, H., Li, X., Yang, S., Yang, S. (2024). The Equity Fund Risk Predictions Via Quantum-Classical Hybrid Neural Networks. In: Zhang, Y., Qi, L., Liu, Q., Yin, G., Liu, X. (eds) Proceedings of the 13th International Conference on Computer Engineering and Networks. CENet 2023. Lecture Notes in Electrical Engineering, vol 1126. Springer, Singapore. https://doi.org/10.1007/978-981-99-9243-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9243-0_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9242-3

  • Online ISBN: 978-981-99-9243-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics