Skip to main content

Oxygen Transport and Plant Ventilation

  • Chapter
  • First Online:
Responses of Plants to Soil Flooding
  • 21 Accesses

Abstract

Internal transport of gases is critical for plants inhabiting flood-prone areas that experience soil oxygen deficiency. Plant adaptation to hypoxia/anoxia is not based on more efficient use of molecular oxygen but on a sustained supply of oxygen to the cells. The formation of gas-filled spaces in tissues (i.e., aerenchyma) is typical of wetland species and provides a path of low resistance for the gas transport along plant organs, especially between emergent shoots and submerged roots. Mechanisms facilitating gas movement to submerged tissues include diffusion and pressurized flows (i.e., convection). Diffusion is the most common mechanism explaining the oxygen movement into, and along, plant roots. The maximum length of a root growing in oxygen-deficient soil is determined by the internal diffusion of oxygen reaching the apex. Pressurized flows are possible in stems and rhizomes of emergent and floating-leaves species. Three different types of pressurized flows have been identified: (1) humidity-induced pressurization, which are flows (positive pressure) generated in living aerial tissues, resulting from a gradient in water vapor concentration across microporous partition separating the leaf gas-spaces and the environment; (2) thermal osmosis that involves the gas flow driven by temperature differences across a microporous partition, where the movement is against the heat flow and from the cold toward the warm side; and (3) venturi-induced suction (negative pressure), which occurs when the wind blows over broken culms creating a suction that moves gases to the rhizome system, while other culms (protected from wind) act as exit points. Finally, in the opposite direction to oxygen movement toward roots, other gases accumulating in submerged tissues are transported toward shoots and vented to the atmosphere, including ethylene and potent greenhouse gases like carbon dioxide, methane, and nitrous oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiko T, Kotula L, Shiono K, Malik AI, Colmer TD, Nakazono M (2012) Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ 35:1618–1630

    Article  CAS  PubMed  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. In: Woolhouse HWW (ed) Advances in botanical research, vol 7. Academic, London, pp 225–332

    Google Scholar 

  • Armstrong J, Armstrong W (1990) Pathways and mechanisms of oxygen transport in Phragmites australis. In: The use of constructed wetlands in water pollution control. Pergamon Press, Oxford, pp 529–533

    Chapter  Google Scholar 

  • Armstrong J, Armstrong W (1991) A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat Bot 39:75–88

    Article  Google Scholar 

  • Armstrong J, Armstrong W (1994) A physical model involving Nuclepore membranes to investigate the mechanism of humidity-induced convection in Phragmites australis. Proc R Soc Edinb, Sect B, Biol Sci 102:529–539

    Article  Google Scholar 

  • Armstrong W, Armstrong J (2014) Plant internal oxygen transport (diffusion and convection) and measuring and modelling oxygen gradients. In: Mancuso, Shabala (eds) Low-oxygen stress in plants. Springer, Vienna, pp 267–297

    Chapter  Google Scholar 

  • Armstrong W, Beckett PM (2011) The respiratory down-regulation debate. New Phytol 190:276–278

    Article  Google Scholar 

  • Armstrong W, Healy MT, Webb T (1982) Oxygen diffusion in pea: I. Pore space resistance in the primary root. New Phytol 91:647–659

    Article  Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM (1992) Phragmites australis: Venturi-and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol 120:197–207

    Article  Google Scholar 

  • Armstrong W, Brändle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neerl 43:307–358

    Article  CAS  Google Scholar 

  • Armstrong W, Armstrong J, Beckett PM (1996a) Pressurised aeration in wetland macrophytes: some theoretical aspects of humidity-induced convection and thermal transpiration. Folia Geobot 31:25–36

    Article  Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM, Halder JE, Lythe S, Holt R, Sinclair A (1996b) Pathways of aeration and the mechanisms and beneficial effects of humidity-and Venturi-induced convections in Phragmites australis (Cav.) Trin. Ex Steud. Aquat Bot 54:177–197

    Article  Google Scholar 

  • Armstrong J, Lemos EEP, Zobayed SMA, Justin SHFW, Armstrong W (1997) A humidity-induced convective throughflow ventilation system benefits Annona squamosa L. explants and coconut calloid. Ann Bot 79:31–40

    Article  Google Scholar 

  • Armstrong W, Webb T, Darwent M, Beckett PM (2009) Measuring and interpreting respiratory critical oxygen pressures in roots. Ann Bot 103:281–293

    Article  PubMed  Google Scholar 

  • Barba J, Bradford MA, Brewer PE, Bruhn D, Covey K, van Haren J, Megonigal JP, Nørgaard Mikkelsen T, Pangala SR, Pihlatie M, Poulter B, Rivas-Ubach A, Schadt CW, Terazawa K, Warner DL, Zhang Z, Vargas R (2019) Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytol 222:18–28

    Article  CAS  PubMed  Google Scholar 

  • Beckett PM, Armstrong W, Justin SHFW, Armstrong J (1988) On the relative importance of convective and diffusive gas-flows in plant aeration. New Phytol 110:463–468

    Article  Google Scholar 

  • Bendix M, Tornbjerg T, Brix H (1994) Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective throughflow. Aquat Bot 49:75–89

    Article  Google Scholar 

  • Bhadrachalam A, Chakravorti SP, Banerjee NK, Mohanty SK, Mosier AR (1992) Denitrification in intermittently flooded rice fields and N-gas transport through rice plants. Ecol Bull 42:183–187

    CAS  Google Scholar 

  • Brix H (1990) Gas exchange through the soil-atmosphere interphase and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Water Res 24:259–266

    Article  CAS  Google Scholar 

  • Brix H, Sorrell BK, Orr PT (1992) Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol Oceanogr 37:1420–1433

    Article  Google Scholar 

  • Brix H, Sorrell BK, Schierup HH (1996) Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquat Bot 54:151–163

    Article  Google Scholar 

  • Chanton JP, Whiting GJ, Happell JD, Gerard G (1993) Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquat Bot 46:111–128

    Article  CAS  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62:39–57

    Article  CAS  PubMed  Google Scholar 

  • Constable JV, Longstreth DJ (1994) Aerenchyma carbon dioxide can be assimilated in Typha Iatifolia L. leaves. Plant Physiol 106:1065–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constable JY, Grace JB, Longstreth DJ (1992) High carbon dioxide concentrations in aerenchyma of Typha latifolia. Am J Bot 79:415–418

    Article  Google Scholar 

  • Dacey JW, Klug MJ (1982) Ventilation by floating leaves in Nuphar. Am J Bot 69:999–1003

    Article  Google Scholar 

  • Dedes D, Woermann D (1996) Convective gas flow in plant aeration and thermo-osmosis: a model experiment. Aquat Bot 54:111–120

    Article  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Exchange of trace gases between terrestrial ecosystems and the atmosphere, vol 47. Wiley, pp 7–21

    Google Scholar 

  • Gaynard TJ (1979) Some aspects of internal aeration in wetland plants. (Doctoral dissertation). University of Hull

    Google Scholar 

  • Gibberd MR, Gray JD, Cocks PS, Colmer TD (2001) Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ‘aerotropic rooting’. Ann Bot 88:579–589

    Article  Google Scholar 

  • Greenwood DJ (1967) Studies on the transport of oxygen through the stems and roots of vegetable seedlings. New Phytol 66:337–347

    Article  Google Scholar 

  • Grosse W (1996) Pressurised ventilation in floating-leaved aquatic macrophytes. Aquat Bot 54:137–150

    Article  Google Scholar 

  • Grosse W, Bauch C (1991) Gas transfer in floating-leaved plants. Vegetatio 97:185–192

    Article  Google Scholar 

  • Harden HS, Chanton JP (1994) Locus of methane release and mass-dependent fractionation from two wetland macrophytes. Limnol Oceanogr 39:148–154

    Article  CAS  Google Scholar 

  • Henneberg A, Sorrell BK, Brix H (2012) Internal methane transport through Juncus effusus: experimental manipulation of morphological barriers to test above-and below-ground diffusion limitation. New Phytol 196:799–806

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • Jackson MB, Campbell DJ (1976) Waterlogging and petiole epinasty in tomato: the role of ethylene and low oxygen. New Phytol 76:21–29

    Article  CAS  Google Scholar 

  • Jensen CR, Stolzy LH, Letey J (1967) Tracer studies of oxygen diffusion through roots of barley, corn, and rice. Soil Sci 103:23–29

    Article  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Article  Google Scholar 

  • Kirk GJ (2003) Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol 159:185–194

    Article  CAS  PubMed  Google Scholar 

  • Konnerup D, Sorrell BK, Brix H (2011) Do tropical wetland plants possess convective gas flow mechanisms? New Phytol 190:379–386

    Article  PubMed  Google Scholar 

  • Kotula L, Ranathunge K, Schreiber L, Steudle E (2009) Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J Exp Bot 60:2155–2167

    Article  CAS  PubMed  Google Scholar 

  • Kotula L, Clode PL, Striker GG, Pedersen O, Läuchli A, Shabala S, Colmer TD (2015) Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (Hordeum vulgare). New Phytol 208:1114–1125

    Article  CAS  PubMed  Google Scholar 

  • Leuning R (1983) Transport of gases into leaves. Plant Cell Environ 6:181–194

    Article  CAS  Google Scholar 

  • Manzur ME, Grimoldi AA, Insausti P, Striker GG (2014) Radial oxygen loss and physical barriers in relation to root tissue age in species with different types of aerenchyma. Funct Plant Biol 42:9–17

    Article  PubMed  Google Scholar 

  • Mevi-Schutz J, Grosse W (1988) A two-way gas transport system in Nelumbo nucifera. Plant Cell Environ 11:27–34

    Article  Google Scholar 

  • Parlanti S, Kudahettige NP, Lombardi L, Mensuali-Sodi A, Alpi A, Perata P, Pucciariello C (2011) Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Ann Bot 107:1335–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen O, Rich SM, Colmer TD (2009) Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. Plant J 58:147–156

    Article  CAS  PubMed  Google Scholar 

  • Pedersen O, Sauter M, Colmer TD, Nakazono M (2021) Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytol 229:42–49

    Article  CAS  PubMed  Google Scholar 

  • Polko JK, Pierik R, van Zanten M, Tarkowská D, Strnad M, Voesenek LA, Peeters AJ (2013) Ethylene promotes hyponastic growth through interaction with ROTUNDIFOLIA3/CYP90C1 in Arabidopsis. J Exp Bot 64:613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils, vol 10. Academic Press, New York, pp 9–45

    Google Scholar 

  • Reddy KR, Patrick WH Jr, Lindau CW (1989) Nitrification–denitrification at the plant root–sediment interface in wetlands. Limnol Oceanogr 34:1004–1013

    Article  CAS  Google Scholar 

  • Rusch H, Rennenberg H (1998) Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201:1–7

    Article  CAS  Google Scholar 

  • Sasidharan R, Voesenek LA (2015) Ethylene-mediated acclimations to flooding stress. Plant Physiol 169:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiono K, Yamauchi T, Yamazaki S, Mohanty B, Malik AI, Nagamura Y, Nishizawa NK, Tsutsumi N, Colmer TD, Nakazono M (2014) Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). J Exp Bot 65:4795–4806

    Article  CAS  PubMed  Google Scholar 

  • Singer A, Eshel A, Agami M, Beer S (1994) The contribution of aerenchymal CO2 to the photosynthesis of emergent and submerged culms of Scirpus lacustris and Cyperus papyrus. Aquat Bot 49:107–116

    Article  Google Scholar 

  • Smirnoff N, Crawford RMM (1983) Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Ann Bot 51:237–249

    Article  Google Scholar 

  • Sorrell BK, Brix H, Orr PT (1997) Eleocharis sphacelata: internal gas transport pathways and modelling of aeration by pressurized flow and diffusion. New Phytol 136:433–442

    Article  PubMed  Google Scholar 

  • Steinberg SL (1996) Mass and energy exchange between the atmosphere and leaf influence gas pressurization in aquatic plants. New Phytol 134:587–599

    Article  CAS  PubMed  Google Scholar 

  • Striker GG (2023) An overview of oxygen transport in plants: diffusion and convection. Plant Biol 25:842–847

    Article  CAS  PubMed  Google Scholar 

  • Striker GG, Insausti P, Grimoldi AA, Vega AS (2007) Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ 30:580–589

    Article  CAS  PubMed  Google Scholar 

  • van den Berg M, Ingwersen J, Lamers M, Streck T (2016) The role of Phragmites in the CH4 and CO2 fluxes in a minerotrophic peatland in Southwest Germany. Biogeosciences 13:6107–6119

    Article  Google Scholar 

  • Visser EJ, Pierik R (2007) Inhibition of root elongation by ethylene in wetland and non-wetland plant species and the impact of longitudinal ventilation. Plant Cell Environ 30:31–38

    Article  CAS  PubMed  Google Scholar 

  • Visser EJW, Nabben RHM, Blom CWPM, Voesenek LACJ (1997) Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Environ 20:647–653

    Article  CAS  Google Scholar 

  • Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono-and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245

    Article  Google Scholar 

  • Vroom RJE, van den Berg M, Pangala SR, van der Schee OE, Sorrell BK (2022) Physiological processes affecting methane transport by wetland vegetation—a review. Aquat Bot 182:103547

    Article  Google Scholar 

  • Wang S, Reid MC (2020) Kinetics of nitrous oxide mass transfer from porewater into root aerenchyma of wetland plants. J Environ Qual 49:1717–1729

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Takahashi H, Sato S, Nishiuchi S, Omori F, Malik AI, Colmer TD, Mano Y, Nakazono M (2017) A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. Plant Cell Environ 40:304–316

    Article  CAS  PubMed  Google Scholar 

  • Wegner LH (2010) Oxygen transport in waterlogged plants. In: Waterlogging signalling and tolerance in plants. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Yamauchi T, Nakazono M (2022) Mechanisms of lysigenous aerenchyma formation under abiotic stress. Trends Plant Sci 27:13–15

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Shimamura S, Nakazono M, Mochizuki T (2013) Aerenchyma formation in crop species: a review. Field Crop Res 152:8–16

    Article  Google Scholar 

  • Yamauchi T, Tanaka A, Inahashi H, Nishizawa NK, Tsutsumi N, Inukai Y, Nakazono M (2019) Fine control of aerenchyma and lateral root development through AUX/IAA-and ARF-dependent auxin signalling. PNAS 116:20770–20775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Pedersen O, Nakazono M, Tsutsumi N (2021) Key root traits of Poaceae for adaptation to soil water gradients. New Phytol 229:3133–3140

    Article  CAS  PubMed  Google Scholar 

  • Yin YG, Mori Y, Suzui N, Kurita K, Yamaguchi M, Miyoshi Y, Nagao Y, Ashikari M, Nagai K, Kawachi N (2021) Non-invasive imaging of hollow structures and gas movement revealed the gas partial-pressure-gradient-driven long-distance gas movement in the aerenchyma along the leaf blade to submerged organs in rice. New Phytol 232:1974–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Tim Colmer (Univ. Western Australia), Ole Pedersen (Univ. Copenhagen), Lukasz Kotula (Univ. Western Australia), Federico Mollard, and Agustín Grimoldi (Univ. Buenos Aires) for the encouraging discussions about low-oxygen plants’ responses over the years. I especially thank Ole for the feedback while preparing this text, Lukasz and Tim for generously sharing the cross sections used for illustrating root aerenchyma, and Lucía Pérez Pizá for improving the artwork of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo G. Striker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Striker, G.G. (2024). Oxygen Transport and Plant Ventilation. In: Sakagami, JI., Nakazono, M. (eds) Responses of Plants to Soil Flooding. Springer, Singapore. https://doi.org/10.1007/978-981-99-9112-9_9

Download citation

Publish with us

Policies and ethics