Abstract
Machining plays a crucial role in modern manufacturing, relying on automated processes to efficiently create complex parts through subtractive like lathe turning and cutting. However, a major concern in this manufacturing process is tool wear, necessitating a robust system for proactive malfunction detection. To keep up with advancements and meet the increasing demands of speed and precision, artificial intelligence (AI) emerges as a promising solution. However, AI algorithms often require fine-tuning of hyperparameters, which poses a challenge. Swarm intelligence algorithms, inspired by collaborative behaviors observed in nature, offer a potential solution. By applying swarm intelligence to hyperparameter optimization, AI algorithms can achieve optimized models that address time and hardware constraints. This work proposes a methodology based on Extreme Gradient Boosting (XGBoost) for forecasting malfunctions. Additionally, a modified optimization metaheuristic is introduced to specifically enhance the performance of this methodology. To evaluate the proposed approach, it has been applied to a real-world dataset and compared to several well-known optimizers. The results demonstrate admirable performance, highlighting the potential of swarm intelligence in achieving efficient and effective machining processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdulrahman SM (2017) Using swarm intelligence for solving NP-Hard problems. Acad J Nawroz Univ 6(3):46–50
Ahmad MI, Saif Y, Yusof Y, Daud ME, Latif K, Kadir AZA (2022) A case study: monitoring and inspection based on IoT for milling process. Int J Adv Manuf Technol 1–11
Al Hosni N, Jovanovic L, Antonijevic M, Bukumira M, Zivkovic M, Strumberger I, Mani JP, Bacanin N (2022) The XGBoost model for network intrusion detection boosted by enhanced sine cosine algorithm. In: Third international conference on image processing and capsule networks: ICIPCN 2022. Springer, Berlin, pp 213–228
Bacanin N, Jovanovic L, Zivkovic M, Kandasamy V, Antonijevic M, Deveci M, Strumberger I (2023) Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks. Inf Sci 642:119122. https://doi.org/10.1016/j.ins.2023.119122
Bacanin N, Zivkovic M, Antonijevic M, Venkatachalam K, Lee J, Nam Y, Marjanovic M, Strumberger I, Abouhawwash M (2023) Addressing feature selection and extreme learning machine tuning by diversity-oriented social network search: an application for phishing websites detection. Complex Intell Syst. https://doi.org/10.1007/s40747-023-01118-z
Bacanin N, Zivkovic M, Stoean C, Antonijevic M, Janicijevic S, Sarac M, Strumberger I (2022) Application of natural language processing and machine learning boosted with swarm intelligence for spam email filtering. Mathematics 10(22). https://doi.org/10.3390/math10224173; https://www.mdpi.com/2227-7390/10/22/4173
Bahga A, Madisetti VK (2011) Analyzing massive machine maintenance data in a computing cloud. IEEE Trans Parallel Distrib Syst 23(10):1831–1843
Balaji BS, Paja W, Antonijevic M, Stoean C, Bacanin N, Zivkovic M (2023) IoT integrated edge platform for secure industrial application with deep learning. Hum Centric Comput Inf Sci 13
Chavoshi SZ, Goel S, Morantz P (2017) Current trends and future of sequential micro-machining processes on a single machine tool. Mater Des 127:37–53
Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 785–794
Djuric M, Jovanovic L, Zivkovic M, Bacanin N, Antonijevic M, Sarac M (2023) The AdaBoost approach tuned by SNS metaheuristics for fraud detection. In: Proceedings of the international conference on paradigms of computing, communication and data sciences: PCCDS 2022. Springer, Berlin, pp 115–128
Gurrola-Ramos J, Hernàndez-Aguirre A, Dalmau-Cedeño O (2020) COLSHADE for real-world single-objective constrained optimization problems. In: 2020 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8
Jovanovic L, Bacanin N, Antonijevic M, Tuba E, Ivanovic M, Venkatachalam K (2022) Plant classification using firefly algorithm and support vector machine. In: 2022 IEEE Zooming innovation in consumer technologies conference (ZINC). IEEE, pp 255–260
Jovanovic L, Bacanin N, Zivkovic M, Antonijevic M, Jovanovic B, Sretenovic MB, Strumberger I (2023) Machine learning tuning by diversity oriented firefly metaheuristics for industry 4.0. Expert Syst e13293
Jovanovic L, Djuric M, Zivkovic M, Jovanovic D, Strumberger I, Antonijevic M, Budimirovic N, Bacanin N (2023) Tuning XGBoost by planet optimization algorithm: an application for diabetes classification. In: Proceedings of fourth international conference on communication, computing and electronics systems: ICCCES 2022. Springer, Berlin, pp 787–803
Jovanovic L, Jovanovic D, Bacanin N, Jovancai Stakic A, Antonijevic M, Magd H, Thirumalaisamy R, Zivkovic M (2022) Multi-step crude oil price prediction based on LSTM approach tuned by Salp Swarm algorithm with disputation operator. Sustainability 14(21):14616
Jovanovic L, Jovanovic D, Antonijevic M, Nikolic B, Bacanin N, Zivkovic M, Strumberger I (2023) Improving phishing website detection using a hybrid two-level framework for feature selection and XGBoost tuning. J Web Eng 22(03):543–574. https://doi.org/10.13052/jwe1540-9589.2237, https://journals.riverpublishers.com/index.php/JWE/article/view/18475
Jovanovic L, Milutinovic N, Gajevic M, Krstovic J, Rashid TA, Petrovic A (2022) Sine cosine algorithm for simple recurrent neural network tuning for stock market prediction. In: 2022 30th Telecommunications forum (TELFOR). IEEE, pp 1–4
Jovanovic L, Zivkovic M, Antonijevic M, Jovanovic D, Ivanovic M, Jassim HS (2022) An emperor penguin optimizer application for medical diagnostics. In: 2022 IEEE zooming innovation in consumer technologies conference (ZINC). IEEE, pp 191–196
Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471
Luo W, Lin X, Li C, Yang S, Shi Y (2022) Benchmark functions for CEC 2022 competition on seeking multiple optima in dynamic environments. arXiv preprint arXiv:2201.00523
Matzka S (2020) Explainable artificial intelligence for predictive maintenance applications. In: 2020 Third international conference on artificial intelligence for industries (ai4i). IEEE, pp 69–74
Mikic D, Desnica E, Asonja A, Stojanovic B, Epifanic-Pajic V (2016) Reliability analysis of ball bearing on the crankshaft of piston compressors. J Balkan Tribol Assoc
Milutinovic N, Cabarkapa S, Zivkovic M, Antonijevic M, Mladenovic D, Bacanin N (2023) Tuning artificial neural network for healthcare 4.0. by sine cosine algorithm. In: 2023 International conference on intelligent data communication technologies and internet of things (IDCIoT), pp 510–513. https://doi.org/10.1109/IDCIoT56793.2023.10053543
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
Mirjalili S, Mirjalili S (2019) Genetic algorithm. In: Evolutionary algorithms and neural networks: theory and applications, pp 43–55
Móricz L, Viharos ZJ, Németh A, Szépligeti A, Büki M (2020) Off-line geometrical and microscopic & on-line vibration based cutting tool wear analysis for micro-milling of ceramics. Measurement 163:108025
Novakovic B, Durdev M, Radovanovic L, Speight JG (2018) Optimization of manufacturing processes using modern automated CNC milling machines. Appl Eng Lett J Eng Appl Sci 3(4):124–128. https://doi.org/10.18485/aeletters.2018.3.4.2, https://www.aeletters.com/wp-content/uploads/2019/01/AEL00078.pdf
Petrovic A, Antonijevic M, Strumberger I, Jovanovic L, Savanovic N, Janicijevic S (2023) The XGBoost approach tuned by TLB metaheuristics for fraud detection. In: Proceedings of the 1st international conference on innovation in information technology and business (ICIITB 2022), vol 104. Springer Nature, Berlin, p 219
Said NHAM, Yusof Y (2022) Applied internet of things (IoT) in temperature and vibration monitoring system for milling machine. Res Prog Mech Manuf Eng 3(1):476–485
Salb M, Jovanovic L, Zivkovic M, Tuba E, Elsadai A, Bacanin N (2022) Training logistic regression model by enhanced moth flame optimizer for spam email classification. In: Computer networks and inventive communication technologies: proceedings of fifth, ICCNCT 2022. Springer, Berlin, pp 753–768
Sathish K, Kumar SS, Magal RT, Selvaraj V, Narasimharaj V, Karthikeyan R, Sabarinathan G, Tiwari M, Kassa AE (2022) A comparative study on subtractive manufacturing and additive manufacturing. Adv Mater Sci Eng 2022
Stankovic M, Jovanovic L, Bacanin N, Zivkovic M, Antonijevic M, Bisevac P (2023) Tuned long short-term memory model for ethereum price forecasting through an arithmetic optimization algorithm. In: Abraham A, Bajaj A, Gandhi N, Madureira AM, Kahraman C (eds) Innovations in bio-inspired computing and applications. Springer Nature Switzerland, Cham, pp 327–337
Trung D (2022) Effect of cutting parameters on the surface roughness and roundness error when turning the interrupted surface of 40x steel using HSS-TiN insert. Appl Eng Lett J Eng Appl Sci 7(1):1–9
Umapathi K, Vanitha V, Anbarasu L, Zivkovic M, Bacanin N, Antonijevic M (2021) Predictive data regression technique based carbon nanotube biosensor for efficient patient health monitoring system. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-021-03063-6
Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22:387–408
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82
Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspired Comput 2(2):78–84
Yang XS, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1(1):36–50
Yang XS, Slowik A (2020) Firefly algorithm. In: Swarm intelligence algorithms. CRC Press, pp 163–174
Zhang S, Gong M, Zeng X, Gao M (2021) Residual stress and tensile anisotropy of hybrid wire arc additive-milling subtractive manufacturing. J Mater Process Technol 293:117077
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Bozovic, A. et al. (2024). Metaheuristic Optimized Extreme Gradient Boosting Milling Maintenance Prediction. In: Kumar, S., K., B., Kim, J.H., Bansal, J.C. (eds) Fourth Congress on Intelligent Systems. CIS 2023. Lecture Notes in Networks and Systems, vol 868. Springer, Singapore. https://doi.org/10.1007/978-981-99-9037-5_28
Download citation
DOI: https://doi.org/10.1007/978-981-99-9037-5_28
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-9036-8
Online ISBN: 978-981-99-9037-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)


