Skip to main content

Biotechnological Tools for Disease Diagnostic

  • Chapter
  • First Online:
Biotechnological Advances for Disease Tolerance in Plants

Abstract

Plant diseases affect crop productivity and lead to economic deficits all around the world. A number of pathogens such as bacteria, viruses, and fungi infect plants that resulted in qualitative and quantitative losses in crop yield. An effective, precise, and rapid plant disease diagnostic system is required for the early detection of diseases to minimize damage caused and also to increase crop yield and ensure sustainability in the agriculture sector. Early diagnosis also aids in the development of an effective, informative management system to treat plant diseases before they progress. Conventionally, visual inspection was done to detect the plant diseases after the symptoms appeared, but DNA-based and serological methods have transformed diagnosis of plant diseases. Standard PCR-based methods as well as their variants, DNA or RNA probe-based hybridization, and next-generation sequencing-based molecular diagnostic approaches have proved to be excellent choices for phytopathogen detection. But these techniques are laborious, time-consuming, and costly and need well-equipped laboratories and trained personnel. Therefore, new tools for point-of-care diagnostics that are rapid, specific, sensitive, and cost-effective and that can be used directly in the field by low-specialized personnel using minimal equipment are in high demand. Methods like isothermal amplification, remote sensing, the analysis of volatile compounds, nanobiotechnology-based detection, biosensors, etc. can be used to develop point-of-care diagnostics for on-site preliminary screening of plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam K, Bahkali A, Moslem M et al (2011) An optimized protocol for DNA extraction from wheat seeds and loop-mediated isothermal amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain. Int J Mol Sci 12(6):3459–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams I, Fox A (2016) Diagnosis of plant viruses using next-generation sequencing and metagenomic analysis. In: Current research topics in plant virology. Springer, Cham, pp 323–335

    Chapter  Google Scholar 

  • Alemu K (2014) Real-time PCR and its application in plant disease diagnostics. Adv Life Sci Technol 27:39–49

    Google Scholar 

  • Al Khalaf MA, Kumari SG, Kasem AH, Makkouk K (2009) Use of the two faces of nitrocellulose membrane in tissue blot immunoassay for the detection of bean yellow mosaic virus and the possibility of its mechanically transmitted from the printed membrane to the host plant. Arab J Plant Protect 27:91–94

    Google Scholar 

  • Ardui S, Ameur A, Vermeesch JR et al (2018) Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 46:2159–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslam S, Tahir A, Aslam MF et al (2017) Recent advances in molecular techniques for the identification of phytopathogenic fungi—a mini review. J Plant Interact 12(1):493–504

    Article  Google Scholar 

  • Avedi EK, Adediji AO, Kilalo DC et al (2021) Metagenomic analysis and genetic diversity of Tomato leaf curl Arusha virus affecting tomato plants in Kenya. Virol J 18:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badial AB, Sherman D, Stone A et al (2018) Nanopore sequencing as a surveillance tool for plant pathogens in plant and insect tissues. Plant Dis 102:1648–1652

    Article  CAS  Google Scholar 

  • Baldi P, La Porta N (2020) Molecular approaches for low-cost point-of-care pathogen detection in agriculture and forestry. Front Plant Sci 11:570862

    Article  PubMed  PubMed Central  Google Scholar 

  • Balogh Z, Lautner G, Bardoczy V et al (2010) Selection and versatile application of virus-specific aptamers. FASEB J 24:4187–4195

    Article  CAS  PubMed  Google Scholar 

  • Bangratz M, Wonni I, Kini K et al (2020) Design of a new multiplex PCR assay for rice pathogenic bacteria detection and its application to infer disease incidence and detect co-infection in rice fields in Burkina Faso. PLoS One 15(4):e0232115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barba M, Hadidi A (2015) An overview of plant pathology and application of next-generation sequencing technologies. CAB Rev 10(5):1–21

    Article  Google Scholar 

  • Baysal-Gurel F, Kabir MN (2019) Evaluation of fungicides and biocontrol products for the control of Phytophthora root rot of hydrangeas. Arch Phytopathol Plant Protect 52:481–496

    Article  CAS  Google Scholar 

  • Beck JJ, Porter N, Cook D et al (2015) In-field volatile analysis employing a hand-held portable GC-MS: emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochem Anal 26:395–403

    Article  CAS  PubMed  Google Scholar 

  • Belasque L, Gasparoto MCG, Marcassa LG (2008) Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Appl Opt 47:1922–1926

    Article  PubMed  Google Scholar 

  • Berdugo C, Zito R, Paulus S (2014) Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol 63:1344–1356

    Article  CAS  Google Scholar 

  • Bickhart DM, Rosen BD, Koren S et al (2017) Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet 49:643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienkowski D, Aitkenhead MJ, Lees AK (2019) Detection and differentiation between potato (Solanum tuberosum) diseases using calibration models trained with non-imaging spectrometry data. Comput Electron Agric 167:105056

    Article  Google Scholar 

  • Biondi E, Blasioli S, Galeone A et al (2014) Detection of potato brown rot and ring rot by electronic nose: from laboratory to real scale. Talanta 129:422–430

    Article  CAS  PubMed  Google Scholar 

  • Bock CH, Parker PE, Cook AZ, Gottwald TR (2008) Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Dis 92:530–541

    Article  CAS  PubMed  Google Scholar 

  • Bravo C, Moshou D, West J et al (2003) Early disease detection in wheat fields using spectral reflectance. Biosyst Eng 84(2):137–145

    Article  Google Scholar 

  • Burling K, Hunsche M, Noga G (2011) Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in wheat. J Plant Physiol 168:1641–1648

    Article  PubMed  Google Scholar 

  • Camargo A, Smith JS (2009) Image pattern classification for the identification of disease causing agents in plants. Comput Electron Agric 66:121–125

    Article  Google Scholar 

  • Capote N, Pastrana AM, Aguado A, Sánchez-Torres P (2012) Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In: Plant pathology. InTech, London, pp 151–202

    Google Scholar 

  • Cardoso RM, Pereira TS, Facure MH et al (2022) Current progress in plant pathogen detection enabled by nanomaterials-based (bio)sensors. Sens Actuat Rep 4:100068

    Google Scholar 

  • Català S, Pérez-Sierra A, Abad-Campos P (2015) The use of genus-specific amplicon pyrosequencing to assess Phytophthora species diversity using eDNA from soil and water in northern Spain. PLoS One 10:e0119311

    Article  PubMed  PubMed Central  Google Scholar 

  • Cellini A, Biondi E, Blasioli S et al (2016) Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose. Ann Appl Biol 168:409–420

    Article  CAS  Google Scholar 

  • Chalupowicz L, Dombrovsky A, Gaba V et al (2019) Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathol 68:229–238

    Article  CAS  Google Scholar 

  • Chamberlain JS, Gibbs RA, Rainer JE et al (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16(23):11141–11156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Li S, Wang K et al (2008) Spectrum characteristics of cooton canopy infected with Verticillium wilt and applications. Agric Sci China 7:561–569

    Article  Google Scholar 

  • Choi YH, Tapias EC, Kim HK et al (2004) Metabolic discrimination of Catharanthus roseus leaves infected by Phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary A, Sharma S, Yadav P (2022) Remote sensing: a tool of plant disease management. Just Agric Multidisc Newsl 2(7) e-ISSN: 2582–8223

    Google Scholar 

  • Contreras JA, Murray JA, Tolley SE et al (2008) Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J Am Soc Mass Spectrom 19:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino D (2014) Use of infrared spectroscopy for in-field measurement and phenotyping of plant properties: instrumentation, data analysis, and examples. Appl Spectrosc Rev 49(7):564–584

    Article  CAS  Google Scholar 

  • Crossay T, Antheaume C, Redecker D et al (2017) New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Sci Rep 7:14306

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai TT, Lu CC, Lu J et al (2012) Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae. FEMS Microbiol Lett 334(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Darr JA, Zhang J, Makwana NM, Weng X (2017) Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev 117:11125–11238

    Article  CAS  PubMed  Google Scholar 

  • Deasy W, Shepherd T, Alexander CJ et al (2016) Development and validation of a SPME-GC-MS method for in situ passive sampling of root volatiles from glasshouse-grown broccoli plants undergoing below-ground herbivory by larvae of cabbage root fly, Delia radicum L. Phytochem Anal 27:375–393

    Article  CAS  PubMed  Google Scholar 

  • Delwiche SR, Kim MS (2000) Hyperspectral imaging for detection of scab in wheat. Proc SPIE 4203:13–20

    Article  Google Scholar 

  • Demers JE, Crouch JA, Castlebury LA (2015) A multiplex real-time PCR assay for the detection of Puccinia horiana and P. chrysanthemi on chrysanthemum. Plant Dis 99(2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Denschlag C, Vogel RF, Niessen L (2012) Hyd5 gene-based detection of the major gushing-inducing Fusarium spp. in a loop-mediated isothermal amplification (LAMP) assay. Int J of. Food Microbiol 156(3):189–196

    Article  CAS  Google Scholar 

  • Donosoa A, Valenzuela S (2018) In-field molecular diagnosis of plant pathogens: recent trends and future perspectives. Plant Pathol 67:1451–1461

    Article  Google Scholar 

  • Drissner D, Freimoser FM (2017) MALDI-TOF mass spectroscopy of yeasts and filamentous fungi for research and diagnostics in the agricultural value chain. Chem Biol Technol Agric 4:13

    Article  Google Scholar 

  • Dyussembayev K, Sambasivam P, Bar I et al (2021) Biosensor technologies for early detection and quantification of plant pathogens. Front Chem 9:636245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egging V, Nguyen J, Kurouski D (2018) Detection and identification of fungal infections in intact wheat and Sorghum grain using a hand-held Raman spectrometer. Anal Chem 90:8616–8621

    Article  CAS  PubMed  Google Scholar 

  • Eisenstein M (2017) An ace in the hole for DNA sequencing. Nature 550:285–288

    Article  PubMed  Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139:3804–3810

    Article  CAS  PubMed  Google Scholar 

  • Farber C, Kurouski D (2018) Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal Chem 90:3009–3012

    Article  CAS  PubMed  Google Scholar 

  • Farber C, Bryan R, Paetzold L et al (2020a) Non-invasive characterization of single-, double- and triple-viral diseases of wheat with a hand-held Raman spectrometer. Front Plant Sci 11:01300

    Article  PubMed  PubMed Central  Google Scholar 

  • Farber C, Sanchez L, Rizevsky S et al (2020c) Raman spectroscopy enables non-invasive identification of Peanut genotypes and value-added traits. Sci Rep 10:7730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fegla GI, El-Samra IA, Younes HA, Abd El-Aziz MH (2000) Optimization of dot Immunobinding assay (DIA) for detection of tomato mosaic virus (ToMV). Adv Agric Res 5(3):1495–1506

    Google Scholar 

  • Filloux D, Fernandez E, Loire E et al (2018) Nanopore-based detection and characterization of yam viruses. Sci Rep 8:17879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franić I, Prospero S, Hartmann M et al (2019) Are traded forest tree seeds a potential source of nonnative pests? Ecol Appl 29:e01971

    Article  PubMed  Google Scholar 

  • Freitas TA, Proença CA, Baldo TA et al (2019) Ultrasensitive immunoassay for detection of citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Talanta 205:120110

    Article  CAS  PubMed  Google Scholar 

  • Fróna D, Szenderák J, Harangi-Rákos M (2019) The challenge of feeding the world. Sustainability 11:5816

    Article  Google Scholar 

  • Galeano Garcia P, Neves dos Santos F, Zanotta S et al (2018) Metabolomics of Solanum lycopersicum infected with Phytophthora infestans leads to early detection of late blight in asymptomatic plants. Molecules 23:3330

    Article  PubMed  PubMed Central  Google Scholar 

  • Gogoi NK, Deka B, Bora LC (2018) Remote sensing and its use in detection and monitoring plant diseases: a review. Agric Rev 39(4):307–313

    Google Scholar 

  • Graeff S, Link J, Claupein W (2006) Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Cent Eur J Biol 1:275–288

    Google Scholar 

  • Hawkins SA, Park B, Poole GH et al (2010) Detection of citrus Huanglongbing by fourier transform infrared–attenuated total reflection spectroscopy. Appl Spectrosc 64:100–103

    Article  CAS  PubMed  Google Scholar 

  • Hayden CE (2015) Pint-sized DNA sequencer impresses first users. Nat News 521(7550):15

    Article  Google Scholar 

  • Hiremath L, Naik GR (2004) Rapid diagnosis of sugarcane red rot by dot-immunobinding assay (DIBA) technique. Indian J Biotechnol 3:542–545

    Google Scholar 

  • Huang JF, Apan A (2006) Detection of Sclerotinia rot disease on celery using hyperspectral data and partial least squares regression. J Spat Sci 51(2):129–142

    Article  Google Scholar 

  • Huang W, Lamb DW, Niu Z et al (2007) Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis Agric 8:187–197

    Article  Google Scholar 

  • Iturralde Martinez JF, Flores FJ et al (2019) Multiplex end-point PCR for the detection of three species of ophiosphaerella causing spring dead spot of bermudagrass. Plant Dis 103(8):2010–2014

    Article  PubMed  Google Scholar 

  • Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB (2021) The potential use of isothermal amplification assays for in-field diagnostics of plant pathogens. Plan Theory 10(11):2424

    CAS  Google Scholar 

  • Jo Y, Choi H, Kim SM et al (2016) Integrated analyses using RNA-Seq data reveal viral genomes, single nucleotide variations, the phylogenetic relationship, and recombination for apple stem grooving virus. BMC Genomics 17:579

    Article  PubMed  PubMed Central  Google Scholar 

  • Jo Y, Choi H, Kim SM et al (2017) The pepper virome: natural co-infection of diverse viruses and their quasispecies. BMC Genomics 18:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Kallenbach M, Veit D, Eilers EJ, Schuman MC (2015) Application of silicone tubing for robust, simple, high throughput, and time-resolved analysis of plant volatiles in field experiments. Bio Protoc 5:e1391

    Article  PubMed  Google Scholar 

  • Kashif M, Pietilä S, Artola K (2012) Detection of viruses in sweet potato from Honduras and Guatemala augmented by deep-sequencing of small-RNAs. Plant Dis 96(10):1430–1437

    Article  CAS  PubMed  Google Scholar 

  • Kfoury N, Scott E, Orians C, Robbat A Jr (2017) Direct contact sorptive extraction: a robust method for sampling plant volatiles in the field. J Agric Food Chem 65:8501–8509

    Article  CAS  PubMed  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM et al (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Knudsen JT, Gershenzon J (2020) The chemical diversity of floral scent. In: Biology of plant volatiles. CRC Press, Boca Raton, FL, p 22

    Google Scholar 

  • Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60(1):111–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Komorowska B, Hasiów-Jaroszewska B, Minicka J (2017) Application of nucleic acid aptamers for detection of apple stem pitting virus isolates. Mol Cell Probes 36:62–65

    Article  CAS  PubMed  Google Scholar 

  • Krajaejun T, Lohnoo T, Jittorntam P et al (2018) Assessment of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification and biotyping of the pathogenic oomycete Pythium insidiosum. Int J Infect Dis 77:61–67

    Article  CAS  PubMed  Google Scholar 

  • Krimmer M, Farber C, Kurouski D (2019) Rapid and noninvasive typing and assessment of nutrient content of maize kernels using a handheld Raman spectrometer. ACS Omega 4:16330–16335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krivitsky V, Granot E, Avidor Y et al (2021) Rapid collection and aptamer-based sensitive electrochemical detection of soybean rust fungi airborne urediniospores. ACS Sens 6(3):1187–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Pathak S, Prakash N et al (2021) Application of spectroscopic techniques in early detection of fungal plant pathogens. In: Diagnostics of plant diseases. IntechOpen, England, pp 1–18

    Google Scholar 

  • Kuska M, Wahabzada M, Leucker M et al (2015) Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions. Plant Methods 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Laothawornkitkul J, Moore JP, Taylor JE et al (2008) Discrimination of plant volatile signatures by an electronic nose: a potential technology for plant pest and disease monitoring. Environ Sci Technol 42:8433–8439

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio VMT, Nivarlet N, Lippolis V et al (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108

    Article  CAS  PubMed  Google Scholar 

  • Lautner G, Balogh Z, Bardoczy V et al (2010) Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135:918–926

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Wei Q, Zhu Y (2021) Emerging wearable sensors for plant health monitoring. Adv Funct Mater 31(52):2106475

    Article  CAS  Google Scholar 

  • Lewis JA, Papavizas GC (1991) Biocontrol of cotton damping-off caused by Rhizoctonia solani in the field with formulations of Trichoderma spp. and Gliocladium virens. Crop Prot 10:396–402

    Article  Google Scholar 

  • Li P, Lee GH, Kim SY et al (2021a) From diagnosis to treatment: recent advances in patient-friendly biosensors and implantable devices. ACS Nano 15(2):1960–2004

    Article  CAS  PubMed  Google Scholar 

  • Li W, Matsuhisa N, Liu Z et al (2021b) An on-demand plant-based actuator created using conformable electrodes. Nat Electron 4(2):134–142

    Article  Google Scholar 

  • Li Z, Paul R, Tis TB et al (2019) Noninvasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat Plants 5:856–866

    Article  CAS  PubMed  Google Scholar 

  • Liaghat S, Ehsani R, Mansor S et al (2014a) Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. Int J Remote Sens 35(10):3427–3439

    Article  Google Scholar 

  • Liaghat S, Mansor S, Ehsani R et al (2014b) Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm. Comput Electron Agric 101:48–54

    Article  Google Scholar 

  • Liang PS, Haff RP, Hua SST et al (2018) Nondestructive detection of zebra chip disease in potatoes using near infrared spectroscopy. Biosyst Eng 166:161

    Article  Google Scholar 

  • Lin YJ, Lin HK, Lin YH (2020) Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan. PLoS One 15(3):e0230330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Li C, Sun X et al (2017) Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology 28:485705

    Article  PubMed  Google Scholar 

  • Luo J, Vogel RF, Niessen L (2012) Development and application of a loop-mediated isothermal amplification assay for rapid identification of aflatoxigenic molds and their detection in food samples. Int J Food Microbiol 159(3):214–224

    Article  CAS  PubMed  Google Scholar 

  • Mandrile L, Rotunno S, Miozzi L et al (2019) Non-destructive Raman spectroscopy as a tool for early detection and discrimination of the infection of tomato plants by two economically important viruses. Anal Chem 91:9025–9031

    Article  CAS  PubMed  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S et al (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35:1–25

    Article  Google Scholar 

  • Matsumura EE, Coletta-Filho HD, Nouri S et al (2017) Deep sequencing analysis of RNAs from citrus plants grown in a citrus sudden death-affected area reveals diverse known and putative novel viruses. Viruses 9(4):92

    Article  PubMed  PubMed Central  Google Scholar 

  • McKeague M, Bradley CR, De Girolamo A et al (2010) Screening and initial binding assessment of fumonisin B1 aptamers. Int J Mol Sci 11:4864–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meicen L, Shi J (2015) Western blot detection of Xanthomonas oryzae pv. oryzae in rice. J Plant Pathol Microbiol S4:005

    Google Scholar 

  • Milligan JN, Shroff R, Garry DJ, Ellington AD (2018) Evolution of a thermophilic strand-displacing polymerase using high-temperature isothermal compartmentalized self-replication. Biochemist 57(31):4607–4619

    Article  CAS  Google Scholar 

  • Moalemiyan M, Vikram A, Kushalappa AC, Yaylayan V (2006) Volatile metabolite profiling to detect and discriminate stem-end rot and anthracnose diseases of mango fruits. Plant Pathol 55:792–802

    Article  CAS  Google Scholar 

  • Moshou D, Bravo C, West J et al (2004) Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput Electron Agric 44:173–188

    Article  Google Scholar 

  • Moshou D, Bravo C, Wahlen S et al (2006) Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps. Precis Agric 7:149–164

    Article  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD et al (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutuku JM, Wamonje FO, Mukeshimana G et al (2018) Metagenomic analysis of plant virus occurrence in common bean (Phaseolus vulgaris) in Central Kenya. Front Microbiol 9:2939

    Article  PubMed  PubMed Central  Google Scholar 

  • Naidu RA, Perry EM, Pierce FJ, Mekuria T (2009) The potential of spectral reflectance 479 technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine 480 grape cultivars. Comput Electron Agric 66(1):38–45

    Article  Google Scholar 

  • Naimushin AN, Soelberg SD, Bartholomew DU, Elkind JL, Furlong CE (2003) A portable surface plasmon resonance (SPR) sensor system with temperature regulation. Sensors Actuators B Chem 96:253–260

    Article  CAS  Google Scholar 

  • Najjar K, Abu-Khalaf N (2021) Visible/near-infrared (VIS/NIR) spectroscopy technique to detect gray mold disease in the early stages of tomato fruit: VIS/NIR spectroscopy for detecting gray mold in tomato. J Microbiol Biotechnol Food Sci 11(2):e3108

    Article  Google Scholar 

  • Niessen L, Vogel RF (2010) Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int J Food Microbiol 140(2–3):183–191

    Article  CAS  PubMed  Google Scholar 

  • Niessen L, Gräfenhan T, Vogel RF (2012) ATP citrate lyase 1 (acl1) gene-based loop-mediated amplification assay for the detection of the Fusarium tricinctum species complex in pure cultures and in cereal samples. Int J Food Microbiol 158(3):171–185

    Article  CAS  PubMed  Google Scholar 

  • Nishmitha K, Chaithra M (2022) MALDI-TOF MS: a novel tool for rapid detection of plant pathogens. Food Sci Rep 3(1):27–29

    Google Scholar 

  • Nygren K, Dubey M, Zapparata A et al (2018) The mycoparasitic fungus Clonostachys rosea responds with both common and specific gene expression during interspecific interactions with fungal prey. Evol Appl 11:931–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Özdemir Z (2009) Development of a multiplex PCR assay for the simultaneous detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and Xanthomonas axonopodis pv. vesicatoria using pure cultures. J Plant Pathol 91(2):495–497

    Google Scholar 

  • Paliwal Y (2008) Rapid diagnosis of barley yellow dwarf virus in plants using serologically specific electron microscopy. J Phytopathol 89:25–36

    Article  Google Scholar 

  • Pallás V, Sánchez-Navarro JA, James D (2018) Recent advances on the multiplex molecular detection of plant viruses and viroids. Front Microbiol 9:2087

    Article  PubMed  PubMed Central  Google Scholar 

  • Panth M, Hassler SC, Baysal-Gurel F (2020) Methods for management of soilborne diseases in crop production. Agriculture 10:16

    Article  CAS  Google Scholar 

  • Paul R, Ostermann E, Gu Z, Ristaino JB, Wei Q (2020) DNA extraction from plant leaves using a microneedle patch. Curr Protoc Plant Biol 5:e20104

    Article  PubMed  Google Scholar 

  • Paul R, Saville AC, Hansel JC et al (2019) Extraction of plant DNA by microneedle patch for rapid detection of plant diseases. ACS Nano 13:6540–6549

    Article  CAS  PubMed  Google Scholar 

  • Payne WZ, Kurouski D (2021) Raman-based diagnostics of biotic and abiotic stresses in plants. A review. Front Plant Sci 11:616672

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettersson H, Aberg L (2003) Near infrared spectroscopy for determination of mycotoxins in cereals. Food Control 14(4):229–232

    Article  CAS  Google Scholar 

  • Polder G, Van der Heijden GWAM, Van Doorn J, Baltissen TAHMC (2014) Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision. Biosyst Eng 117:35–42

    Article  Google Scholar 

  • Pontes JGM, Ohashi WY, Brasil AJM et al (2016) Metabolomics by NMR spectroscopy in plant disease diagnostic: Huanglongbing as a case study. Chem Select 6:1176–1178

    Google Scholar 

  • Qin J, Burks TF, Kim MS et al (2008) Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sens & Instrumen Food Qual 2:168–177

    Article  Google Scholar 

  • Qu JH, Liu D, Cheng JH et al (2015) Applications of near-infrared spectroscopy in food safety evaluation and control: a review of recent research advances. Crit Rev Food Sci Nutr 55(13):1939–1954

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan GV, Cook N, Bueno Sancho V et al (2019) MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. BMC Biol 17:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M (2019) Local applications but global implications: can pesticides drive microorganisms to develop antimicrobial resistance. Sci Total Environ 654:177–189

    Article  CAS  PubMed  Google Scholar 

  • Rettcher S, Jungk F, Kühn C et al (2015) Simple and portable magnetic immunoassay for rapid detection and sensitive quantification of plant viruses. Appl Environ Microbiol 81:3039–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58:586–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes MI, Nash TE, Dallas MM et al (2013) Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 87:9691–9706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rispail N, Matteis LD, Santos R et al (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6:9100–9110

    Article  CAS  PubMed  Google Scholar 

  • Rivas L, Reutersward P, Rasti R, Herrmann B et al (2018) A vertical flow paper-microarray assay with isothermal DNA amplification for detection of Neisseria meningitidis. Talanta 183:192–200

    Article  CAS  PubMed  Google Scholar 

  • Rizzato C, Lombardi L, Zoppo M et al (2015) Pushing the limits of MALDI-TOF mass spectrometry: beyond fungal species identification. J Fungi 1:367–383

    Article  Google Scholar 

  • Roman Reyna V, Dupas E, Cesbron S, Marchi G et al (2021) Metagenomic sequencing for identification of Xylella fastidiosa from leaf samples. Methods Protoc 6(5):e00591–e00521

    CAS  Google Scholar 

  • Rys M, Juhász C, Surówka E et al (2014) Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. Plant Physiol Biochem 83:267–278

    Article  CAS  PubMed  Google Scholar 

  • Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140:4260–4269

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Ermolenkov A, Biswas S et al (2020b) Raman spectroscopy enables non-invasive and confirmatory diagnostics of salinity stresses, nitrogen, phosphorus, and potassium deficiencies in rice. Front Plant Sci 11:573321

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez L, Ermolenkov A, Tang XT et al (2020c) Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer. Planta 251:64

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Farber C, Lei J et al (2019a) Noninvasive and nondestructive detection of cowpea Bruchid within cowpea seeds with a hand-held Raman spectrometer. Anal Chem 91:1733–1737

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Pant S, Irey MS et al (2019b) Detection and identification of canker and blight on orange trees using a hand-held raman spectrometer. J Raman Spectrosc 50:1875–1880

    Article  CAS  Google Scholar 

  • Sanchez L, Pant S, Mandadi K, Kurouski D (2020e) Raman spectroscopy vs quantitative polymerase chain reaction in early stage Huanglongbing diagnostics. Sci Rep 10:10101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez L, Pant S, Xing Z et al (2019c) Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal Bioanal Chem 411:3125–3133

    Article  CAS  PubMed  Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Article  Google Scholar 

  • Sarrocco S, Vannacci G (2018) Preharvest application of beneficial fungi as a strategy to prevent postharvest mycotoxin contamination: a review. Crop Prot 110:160–170

    Article  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ et al (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439

    Article  PubMed  Google Scholar 

  • Schwenkbier L, Pollok S, Rudloff A et al (2015) Non-instrumented DNA isolation, amplification and microarray-based hybridization for a rapid on-site detection of devastating Phytophthora kernoviae. Analyst 140(19):6610–6618

    Article  CAS  PubMed  Google Scholar 

  • Scuderi G, Golmohammadi M, Cubero J et al (2010) Development of a simplified NASBA protocol for detecting viable cells of the citrus pathogen Xanthomonas citri subsp. citri under different treatments. Plant Pathol 59(4):764–772

    Article  CAS  Google Scholar 

  • Sheikhzadeh E, Beni V, Zourob M (2021) Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 230:122026

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Wu Q, Liu P et al (2018) Detection of Aspergillus spp. contamination levels in peanuts by near infrared spectroscopy and electronic nose. Food Control 93:1–8

    Article  CAS  Google Scholar 

  • Shnaydeman M, Mansfield B, Yip P et al (2005) Species-species bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Anal Chem 77:5930–5937

    Article  Google Scholar 

  • Sighicelli M, Colao F, Lai A, Patsaeva S (2009) Monitoring post-harvest orange fruit disease by fluorescence and reflectance hyperspectral imaging. ISHS Acta Horticult 817:277–284

    Article  Google Scholar 

  • Tomlinson JA, Dickinson MJ, Boonham N (2010) Rapid detection of Phytophthora ramorum and P. Kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology 100(2):143–149

    Article  CAS  PubMed  Google Scholar 

  • Torres AM (2010) Application of molecular markers for breeding disease resistant varieties in crop plants. In: Molecular techniques in crop improvement. Springer, Dordrech, pp 185–205

    Google Scholar 

  • Tran TT, Clark K, Ma W, Mulchandani A (2020) Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor. Biosens Bioelectron 147:111766

    Article  CAS  PubMed  Google Scholar 

  • Tremblay ÉD, Duceppe MO, Berube JA et al (2018) Screening for exotic forest pathogens to increase survey capacity using metagenomics. Phytopathology 108:1509–1521

    Article  PubMed  Google Scholar 

  • Umesha S, Avinash P (2015) Multiplex PCR for simultaneous identification of Ralstonia solanacearum and Xanthomonas perforans. 3 Biotech, 5(3):245–252

    Google Scholar 

  • Vallejo-Perez MR, Galindo MMG, Ramirez EMG et al (2016) Raman spectroscopy an option for the early detection of citrus Huanglongbing. Appl Spectrosc 70:829–839

    Article  Google Scholar 

  • Vallejo-Perez MR, Sosa-Herrera JA, Navarro-Contreras HR et al (2021) Raman Spectroscopy and machine-learning for early detection of bacterial canker of tomato: the asymptomatic disease condition. Plants (Basel) 10(8):1542

    Article  CAS  PubMed  Google Scholar 

  • Vidic J, Vizzini P, Manzano M et al (2019) Point-of-need DNA testing for detection of foodborne pathogenic bacteria. Sensors 19:1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Liao Y, Meng Y et al (2019) The early, rapid, and non-invasive detection of citrus Huanglongbing (HLB) based on microscopic confocal Raman. Food Anal Methods 12:2500–2508

    Article  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712

    Article  CAS  PubMed  Google Scholar 

  • Wylie SJ, Li H, Saqib M, Jones MGK (2014) The global trade in fresh produce and the vagility of plant viruses: a case study in garlic. PLoS One 9:e105044

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie X, Jiang J, Huang M (2021) Detection of Southern rice black-streaked dwarf virus using western blotting with P6. Front Sustain Food Syst 5:637382

    Article  Google Scholar 

  • Yang S, Johnson MA, Hansen MA et al (2022) Metagenomic sequencing for detection and identification of the boxwood blight pathogen Calonectria pseudonaviculata. Sci Rep 12:1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeturu S, Jentzsch PV, Ciobotă V et al (2016) Handheld Raman spectroscopy for the early detection of plant diseases: Abutilon mosaic virus infecting Abutilon sp. Anal Methods 8:3450–3457

    Article  CAS  Google Scholar 

  • Zhang M, Qin Z, Liu X (2005) Remote sensed spectral imagery to detect late blight in field tomatoes. Precis Agric 6:489–508

    Article  Google Scholar 

  • Zhang J, Feng X, Wu Q et al (2022) Rice bacterial blight resistant cultivar selection based on visible/near-infrared spectrum and deep learning. Plant Methods 18:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao F, He J, Li X et al (2020) Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens Bioelectron 170:112636

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Liu L, Kong D et al (2014) Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii subsp. Stewartii. ACS Appl Mater Interfaces 6(23):21178–21183

    Article  CAS  PubMed  Google Scholar 

  • Zhenyan C, Yihua Y, Yang S et al (2021) Simultaneous detection of four pathogens in Dendrobium officinale by nested multiplex PCR assay. Crop Prot 140:105445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhiman, K., Sharma, D., Rana, S., Kumari, R., Thakur, A., Thakur, K. (2024). Biotechnological Tools for Disease Diagnostic. In: Singh, K., Kaur, R., Deshmukh, R. (eds) Biotechnological Advances for Disease Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-99-8874-7_10

Download citation

Publish with us

Policies and ethics