Skip to main content

Automated Harmonic Signal Removal-Based Image Feature Extraction Technique: A Comparative Study Using Online Databases

  • Conference paper
  • First Online:
Intelligent Manufacturing and Mechatronics (iM3F 2023)

Abstract

This paper presents an automated harmonic removal technique as an efficient method for identifying and removing the influence of harmonics from the output signal. The method involves disregarding user-defined parameters during system initialization and reconstructing the output signal automatically so that it can be used for system identification. While stochastic subspace-based algorithms (SSI) are generally reliable for modal parameter estimation, applying them to structures with rotating machinery and harmonic excitations presents challenges. Because the SSI method necessitates designating parameters, such as the maximal within-cluster distance, at the outset of each dataset analysis, the issue remains unresolved. In addition to modal identification, the current research concentrates on image-based feature extraction for aggregating and classifying harmonic components and structural poles directly from a stabilization diagram. Utilizing online data sets to validate the algorithm’s efficacy. Using a comparative analysis, the proposed method is compared to existing techniques, namely orthogonal projection-based harmonic signal removal and smoothing techniques based on linear interpolation. The results indicate that the proposed algorithm estimates modal parameters precisely and consistently both before and after the removal of harmonic components from the response signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rainieri C, Fabbrocino G (2015) Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation. Mech Syst Signal Process 60:512–534. https://doi.org/10.1016/j.ymssp.2015.01.019

    Article  Google Scholar 

  2. Neu E, Janser F, Khatibi AA, Orifici AC (2016) Automated modal parameter-based anomaly detection under varying wind excitation. Struct Health Monit 15(6):730–749

    Article  Google Scholar 

  3. Benveniste A, Mevel L (2007) Nonstationary consistency of subspace methods. IEEE Trans Autom Control 52(6):974–984

    Article  MathSciNet  Google Scholar 

  4. Marrongelli G, Magalhães F, Cunha Á (2017) Automated Operational Modal Analysis of an arch bridge considering the influence of the parametric methods inputs. Proc Eng 199:2172–2173. https://doi.org/10.1016/j.proeng.2017.09.170

    Article  Google Scholar 

  5. Neu E, Janser F, Khatibi AA, Orifici AC (2017) Fully automated operational modal analysis using multi-stage clustering. Mech Syst Signal Process 84:308–323. https://doi.org/10.1016/j.ymssp.2016.07.031

    Article  Google Scholar 

  6. Sun M, Makki Alamdari M, Kalhori H (2017) Automated operational modal analysis of a cable-stayed bridge. J Bridge Eng. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001141

    Article  Google Scholar 

  7. Bajrić A, Høgsberg J, Rüdinger F (2018) Evaluation of damping estimates by automated operational modal analysis for offshore wind turbine tower vibrations. Renew Energy 116:153–163

    Article  Google Scholar 

  8. Yaghoubi V, Vakilzadeh MK, Abrahamsson TJS (2018) Automated modal parameter estimation using correlation analysis and bootstrap sampling. Mech Syst Signal Process 100:289–310

    Article  Google Scholar 

  9. Yang X-M, Yi T-H, Qu C-X, Li H-N, Liu H (2018) Automated Eigensystem realization algorithm for operational modal identification of bridge structures. J Aerosp Eng. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000984

    Article  Google Scholar 

  10. Marwitz S, Zabel V, Könke C (2018) Modalanalyse von Monitoringdaten eines Sendeturms. Bautechnik 95(4):288–295

    Article  Google Scholar 

  11. Afshar M, Khodaygan S (2019) Enhanced stabilization diagram for automated modal parameter identification based on power spectral density transmissibility functions. Struct Control Health Monit 26(e2369):1–24

    Google Scholar 

  12. Jacobsen N-J, Andersen P, Brincker R. Eliminating the influence of harmonic components in operational modal analysis. In: Conference Proceedings : IMAC-XXIV : a conference and exposition on structural dynamics, pp S102–S103

    Google Scholar 

  13. Maamar A, Abdelghani M, Le TP, Gagnol V, Sabourin L (2019) Operational modal identification in the presence of harmonic excitation. Appl Acoust 147:64–71. https://doi.org/10.1016/j.apacoust.2018.02.017

    Article  Google Scholar 

  14. Mohanty P, Rixen DJ (2004) Modified SSTD method to account for harmonic excitations during operational modal analysis. Mech Mach Theory 39(12):1247–1255

    Article  Google Scholar 

  15. Reynders E, Houbrechts J, Roeck G (2012) Fully automated ( operational ) modal analysis. Mech Syst Signal Process 29:228–250. https://doi.org/10.1016/j.ymssp.2012.01.007

    Article  Google Scholar 

  16. Modak SV (2011) Influence of a harmonic in the response on randomdec signature. Mech Syst Signal Process 25(7):2673–2682

    Article  Google Scholar 

  17. Agneni A, Coppotelli G, Grappasonni C (2012) A method for the harmonic removal in operational modal analysis of rotating blades. Mech Syst Signal Process 27(1):604–618. https://doi.org/10.1016/j.ymssp.2011.09.013

    Article  Google Scholar 

  18. Daems PJ, Peeters C, Guillaume P, Helsen J (2022) Removal of non-stationary harmonics for operational modal analysis in time and frequency domain. Mech Syst Signal Process 165:108329. https://doi.org/10.1016/j.ymssp.2021.108329

    Article  Google Scholar 

  19. Chen W, Jin M, Huang J, Chen Y, Song H (2021) A method to distinguish harmonic frequencies and remove the harmonic effect in operational modal analysis of rotating structures. Mech Syst Signal Process 161:107928. https://doi.org/10.1016/j.ymssp.2021.107928

    Article  Google Scholar 

  20. Berntsen J, Brandt A (2022) Periodogram ratio based automatic detection and removal of harmonics in time or angle domain. Mech Syst Signal Process 165(2021):108310. https://doi.org/10.1016/j.ymssp.2021.108310

    Article  Google Scholar 

  21. Brandt A, Linderholt A (2012) A periodogram-based method for removing harmonics in operational modal analysis. In: International Conference on Noise and Vibration Engineering 2012, ISMA 2012, including USD 2012: International Conference on Uncertainty in Structure Dynamics, vol 4, pp 2625–2633

    Google Scholar 

  22. Manzato S, Moccia D, Peeters B, Janssens K, White JR (2012) A review of harmonic removal methods for improved operational modal analysis of wind turbines. In: International Conference on Noise and Vibration Engineering 2012, ISMA 2012, including USD 2012: International Conference on Uncertainty in Structure Dynamics. pp 2675–2689.

    Google Scholar 

  23. Bienert J, Andersen P, Aguirre RC (2015) A harmonic peak reduction technique for operational modal analysis of rotating machinery. In: 6th International Operational Modal Analysis Conference, IOMAC 2015

    Google Scholar 

  24. Xia Z, Wang T, Zhang L (2017) Detection and removal of harmonic components in operational modal analysis. J Vibroeng 19(7):5278–5289

    Article  Google Scholar 

  25. Randall RB, Smith WA (2017) New cepstral techniques for operational modal analysis. In: WCCM 2017—1st World Congress on Condition Monitoring

    Google Scholar 

  26. Brandt A (2019) A signal processing framework for operational modal analysis in time and frequency domain. Mech Syst Signal Process 115:380–393. https://doi.org/10.1016/j.ymssp.2018.06.009

    Article  Google Scholar 

  27. Gres S, Andersen P, Hoen C, Damkilde L (2019) Orthogonal projection-based harmonic signal removal for operational modal analysis. Conf Proc Soc Exp Mech Ser 6:9–21

    Article  Google Scholar 

  28. Ramesh A, Habeebullah Sait H (2020) An approach towards selective harmonic elimination switching pattern of cascade switched capacitor twenty nine-level inverter using artificial bee colony algorithm. Microprocess Microsyst 79(August):103292. https://doi.org/10.1016/j.micpro.2020.103292

    Article  Google Scholar 

  29. Rainieri C, Fabbrocino G (2014) Operational modal analysis of civil engineering structures. Springer, New York, p 322

    Book  Google Scholar 

  30. Hasan MDA, Ahmad ZAB, Leong MS, Hee LM, Idris HMI (2019) Cluster analysis for automated operational modal analysis: a review. MATEC Web Conf 255:02012

    Article  Google Scholar 

  31. Rainieri C, Fabbrocino G, Manfredi G, Dolce M (2012) Robust output-only modal identification and monitoring of buildings in the presence of dynamic interactions for rapid post-earthquake emergency management. Eng Struct 34:436–446

    Article  Google Scholar 

  32. Bricker R, Venture C (2015) Introduction to operational modal analysis. Wiley, Chichester, pp 1–376

    Google Scholar 

  33. Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13(6):855–878

    Article  Google Scholar 

  34. Kung SY (1987) New identification and model reduction algorithm via singular value decomposition. In: Proceedings of the 12th Asilomar Conference on Circuits, System and Computers

    Google Scholar 

  35. Schanke SA (2015) Operational modal analysis of large bridges. Master thesis. Norwegian University of Science and Technology (NTNU)

    Google Scholar 

  36. Magalhães F (2010) Operational modal analysis for testing and monitoring of bridges and special structures. Thesis (PhD). University of Porto

    Google Scholar 

  37. Gagnol V, Le TP, Ray P (2011) Modal identification of spindle-tool unit in high-speed machining. Mech Syst Signal Process 25(7):2388–2398. https://doi.org/10.1016/j.ymssp.2011.02.019

    Article  Google Scholar 

  38. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  39. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. The Royal Society, pp 903–995

    Google Scholar 

  40. Yan YJ, Cheng L, Wu ZY, Yam LH (2007) Development in vibration-based structural damage detection technique. Mech Syst Signal Process 21(5):2198–2211

    Article  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to Universiti Teknologi Malaysia (UTM) for its financial support via university research grant (Q.J130000.3824.31J47). In addition, the authors would like to express their gratitude to Institute of Noise and Vibration UTM for funding this research under the Higher Institution Centre of Excellence (HICoE) Grant Scheme (R.K130000.7809.4J226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Danial Abu Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abu Hasan, M.D. et al. (2024). Automated Harmonic Signal Removal-Based Image Feature Extraction Technique: A Comparative Study Using Online Databases. In: Mohd. Isa, W.H., Khairuddin, I.M., Mohd. Razman, M.A., Saruchi, S.'., Teh, SH., Liu, P. (eds) Intelligent Manufacturing and Mechatronics. iM3F 2023. Lecture Notes in Networks and Systems, vol 850. Springer, Singapore. https://doi.org/10.1007/978-981-99-8819-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8819-8_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8818-1

  • Online ISBN: 978-981-99-8819-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics