Skip to main content

Just How Fair is an Unreactive World?

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Abstract

Fitzi, Garay, Maurer, and Ostrovsky (J. Cryptology 2005) showed that in the presence of a dishonest majority, no primitive of cardinality \(n - 1\) is complete for realizing an arbitrary n-party functionality with guaranteed output delivery. In this work, we show that in the presence of \(n - 1\) corrupt parties, no unreactive primitive of cardinality \(n - 1\) is complete for realizing an arbitrary n-party functionality with fairness. We show more generally that for \(t > \frac{n}{2}\), in the presence of t malicious parties, no unreactive primitive of cardinality t is complete for realizing an arbitrary n-party functionality with fairness. We complement this result by noting that \((t+1)\)-wise fair exchange is complete for realizing an arbitrary n-party functionality with fairness. In order to prove our results, we utilize the primitive of fair coin tossing and the notion of predictability. While this notion has been considered in some form in past works, we come up with a novel and non-trivial framework to employ it, one that readily generalizes from the setting of two parties to multiple parties, and also to the setting of unreactive functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These channels may be implemented via a trusted third party, or hardware or cryptographic assumptions.

  2. 2.

    Cardinality refers to the number of parties interacting with a single instance of the ideal primitive.

  3. 3.

    In fact, some of their primitives are also complete for MPC with guaranteed output delivery. The upside of these primitives is that unlike [13], their primitive complexity is independent of the function being computed.

  4. 4.

    Note that for \(t < \frac{n}{2}\), no functionality is needed for MPC with fairness.

  5. 5.

    [10] specified [5]’s protocol for the 2-party case and analyzed the bias.

  6. 6.

    Our method of employing predictors and predictabilities to attack coin tossing protocols is distinct from other those considered in prior works (e.g. [2, 10, 20, 21]).

  7. 7.

    Let us assume that the local state contains all the randomness that the party will ever use through the course of the protocol.

  8. 8.

    Note that when \(t = n\), there is nothing to prove.

  9. 9.

    This can also be viewed as working in the \(\mathcal {F}_{\textsf{bc}}\)-hybrid model. See Sect. 2.4.

  10. 10.

    One way to model this is to consider circuits besides regular computational gates, additionally have “random” gates that simply produce random bits as output.

  11. 11.

    No internal state is retained between invocations of the functionality.

  12. 12.

    More precisely, as long as the channels are one-directional, such as OT channels, Cleve’s lower bound holds.

  13. 13.

    Note \(|\textsf{Pred}_{A, R} - \textsf{Pred}_{B,R}| = 0\), so the gap will not be in this term.

  14. 14.

    \(B_k/A_{k+1}\) is either not in the next unreactive functionality or it is the next broadcaster.

  15. 15.

    Note that after the first unreactive functionality is enabled, the predictor of the party being “kicked-out” is still an initial predictor.

  16. 16.

    This is a conjecture since the 1970s.

  17. 17.

    Note this is not a problem if \(t=n-1\).

References

  1. Alon, B., Omri, E.: Almost-optimally fair multiparty coin-tossing with nearly three-quarters malicious. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 307–335. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_13

    Chapter  Google Scholar 

  2. Alon, B., Omri, E., Paskin-Cherniavsky, A.: MPC with friends and foes. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_24

    Chapter  Google Scholar 

  3. Asharov, G.: Towards characterizing complete fairness in secure two-party computation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_13

    Chapter  Google Scholar 

  4. Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete characterization of fairness in secure two-party computation of Boolean functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 199–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_10

    Chapter  Google Scholar 

  5. Awerbuch, B., Blum, M., Chor, B., Goldwasser, S., Micali, S.: How to implement Bracha’s o(log n) byzantine agreement algorithm. Unpublished manuscript 1(2), 10 (1985)

    Google Scholar 

  6. Beimel, A., Haitner, I., Makriyannis, N., Omri, E.: Tighter bounds on multiparty coin flipping via augmented weak martingales and differentially private sampling. SIAM J. Comput. 51(4), 1126–1171 (2022)

    Article  MathSciNet  Google Scholar 

  7. Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with dishonest majority. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 538–557. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_29

    Chapter  Google Scholar 

  8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, Chicago, IL, USA, 2–4 May 1988. https://doi.org/10.1145/62212.62213

  9. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM Press, Chicago, IL, USA, 2–4 May 1988. https://doi.org/10.1145/62212.62214

  10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: 18th Annual ACM Symposium on Theory of Computing, pp. 364–369. ACM Press, Berkeley, CA, USA , 28–30 May 1986. https://doi.org/10.1145/12130.12168

  11. Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete control processes. Other Words 1(5) (1993)

    Google Scholar 

  12. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multiparty computation. J. Cryptol. 30(4), 1157–1186 (2016). https://doi.org/10.1007/s00145-016-9245-5

    Article  MathSciNet  Google Scholar 

  13. Fitzi, M., Garay, J.A., Maurer, U., Ostrovsky, R.: Minimal complete primitives for secure multi-party computation. J. Cryptol. 18(1), 37–61 (2004). https://doi.org/10.1007/s00145-004-0150-y

    Article  MathSciNet  Google Scholar 

  14. Fitzi, M., Gisin, N., Maurer, U., von Rotz, O.: Unconditional byzantine agreement and multi-party computation secure against dishonest minorities from scratch. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 482–501. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_32

    Chapter  Google Scholar 

  15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, New York City, NY, USA, 25–27 May 1987. https://doi.org/10.1145/28395.28420

  16. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation. J. ACM 58(6), 24:1–24:37 (2011)

    Google Scholar 

  17. Gordon, D., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On complete primitives for fairness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 91–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_7

    Chapter  Google Scholar 

  18. Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_2

    Chapter  Google Scholar 

  19. Haitner, I., Tsfadia, E.: An almost-optimally fair three-party coin-flipping protocol. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of Computing, pp. 408–416. ACM Press, New York, NY, USA, 31 May–3 June 2014. https://doi.org/10.1145/2591796.2591842

  20. Halevi, S., Ishai, Y., Kushilevitz, E., Makriyannis, N., Rabin, T.: On fully secure MPC with solitary output. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 312–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_13

    Chapter  Google Scholar 

  21. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_24

    Chapter  Google Scholar 

  22. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM Symposium on Theory of Computing, pp. 20–31. ACM Press, Chicago, IL, USA, 2–4 May 1988). https://doi.org/10.1145/62212.62215

  23. Kumaresan, R., Raghuraman, S., Sealfon, A.: Synchronizable exchange. Cryptology ePrint Archive, Report 2020/976 (2020). https://eprint.iacr.org/2020/976

  24. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory Ser. A 25(3), 319–324 (1978)

    Article  MathSciNet  Google Scholar 

  25. Maji, H.K., Wang, M.: Black-box use of one-way functions is useless for optimal fair coin-tossing. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 593–617. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_21

    Chapter  Google Scholar 

  26. Merino, A., Mütze, T., et al.: Kneser graphs are hamiltonian. arXiv preprint arXiv:2212.03918 (2022)

  27. Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_1

    Chapter  Google Scholar 

  28. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM Press, Seattle, WA, USA, 15–17 May 1989. https://doi.org/10.1145/73007.73014

  29. Raghuraman, S., Yang, Y.: Just how fair is an unreactive world? Cryptology ePrint Archive, Report 2022/1655 (2022). https://eprint.iacr.org/2022/1655

  30. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society Press, Toronto, Ontario, Canada, 27–29 October 1986. https://doi.org/10.1109/SFCS.1986.25

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raghuraman, S., Yang, Y. (2023). Just How Fair is an Unreactive World?. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14443. Springer, Singapore. https://doi.org/10.1007/978-981-99-8736-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8736-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8735-1

  • Online ISBN: 978-981-99-8736-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics