Skip to main content

Memory-Efficient Attacks on Small LWE Keys

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Abstract

The LWE problem is one of the prime candidates for building the most efficient post-quantum secure public key cryptosystems. Many of those schemes, like Kyber, Dilithium or those belonging to the NTRU-family, such as NTRU-HPS, -HRSS, BLISS or GLP, make use of small max norm keys to enhance efficiency. The presumably best attack on these schemes is a hybrid attack, which combines combinatorial techniques and lattice reduction. While lattice reduction is not known to be able to exploit the small max norm choices, May recently showed (Crypto 2021) that such choices allow for more efficient combinatorial attacks.

However, these combinatorial attacks suffer enormous memory requirements, which render them inefficient in realistic attack scenarios and, hence, make their general consideration when assessing security questionable. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small max norm LWE secrets using only a polynomial amount of memory. We provide analyses of our algorithms for secret key distributions of current NTRU, Kyber and Dilithium variants, showing that our new approach outperforms previous memory-efficient algorithms. For instance, considering uniformly random ternary secrets of length n we improve the best known time complexity for polynomial memory algorithms from \(2^{1.063n}\) down-to \(2^{0.926n}\). We obtain even larger gains for LWE secrets in \(\{-m,\ldots ,m\}^n\) with \(m=2,3\) as found in Kyber and Dilithium. For example, for uniformly random keys in \(\{-2,\ldots ,2\}^n\) as is the case for Dilithium we improve the previously best time from \(2^{1.742n}\) down-to \(2^{1.282n}\).

Our fastest algorithm incorporates various different algorithmic techniques, but at its heart lies a nested collision search procedure inspired by the Nested-Rho technique from Dinur, Dunkelman, Keller and Shamir (Crypto 2016). Additionally, we heavily exploit the representation technique originally introduced in the subset sum context to make our nested approach efficient.

A. Esser—Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID MA 2536/12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Best runtime results from May [31] are slightly less than the square of current lattice complexities.

  2. 2.

    Since May’s algorithm performance is worse towards high weights, we considered for this comparison only weights \(w/n\le \frac{2}{3}\).

  3. 3.

    The precise choice of \(\mathcal {T}_i\) depends on the specific instantiation and is described later.

  4. 4.

    The concrete choice of \(\mathcal {D}_i\), similar to the function domains \(\mathcal {T}_i\), depends on the instantiation and is specified later.

  5. 5.

    We have to count the appearances of 1 (resp. 2) entries on the left (or right) of the possible representations given in Eq. (12).

References

  1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-Henríquez, F.: On the cost of computing isogenies between supersingular elliptic curves. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp. 322–343. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-7_15

    Chapter  Google Scholar 

  2. Albrecht, M.R., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_6

    Chapter  Google Scholar 

  3. Albrecht, M.R., Bai, S., Fouque, P.-A., Kirchner, P., Stehlé, D., Wen, W.: Faster enumeration-based lattice reduction: root hermite factor \(k^{1/(2k)}\) Time \(k^{k/8+o(k)}\). In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 186–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_7

    Chapter  Google Scholar 

  4. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knapsacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_21

    Chapter  Google Scholar 

  5. Bellini, E., et al.: Parallel isogeny path finding with limited memory. In: Isobe, T., Sarkar, S. (eds.) INDOCRYPT 2022. LNCS, vol. 13774, pp. 294–316. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22912-1_13

    Chapter  Google Scholar 

  6. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime: reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_12

    Chapter  Google Scholar 

  7. Bi, L., Lu, X., Luo, J., Wang, K.: Hybrid dual and meet-LWE attack. In: Nguyen, K., Yang, G., Guo, F., Susilo, W. (eds.) ACISP 2022. LNCS, vol. 13494, pp. 168–188. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22301-3_9

    Chapter  Google Scholar 

  8. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_22

    Chapter  Google Scholar 

  9. Bos, J., et al.: Crystals-kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 353–367. IEEE (2018)

    Google Scholar 

  10. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy reduction. Int. J. Appl. Cryptogr. 2(3), 212–228 (2012)

    Article  MathSciNet  Google Scholar 

  11. Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary syndrome decoding with large weight. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_18

    Chapter  Google Scholar 

  12. Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and LPN algorithms via multiple collisions. In: Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 178–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35199-1_9

    Chapter  Google Scholar 

  13. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Memory-efficient algorithms for finding needles in haystacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 185–206. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_7

    Chapter  Google Scholar 

  14. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  15. Ducas, L., Stevens, M., van Woerden, W.P.J.: Advanced lattice sieving on GPUs, with tensor cores. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 249–279. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-77886-6_9

    Chapter  Google Scholar 

  16. Esser, A., Girme, R., Mukherjee, A., Sarkar, S.: Memory-efficient attacks on small LWE keys. Cryptology ePrint Archive, Report 2023/243 (2023). https://eprint.iacr.org/2023/243

  17. Esser, A., May, A.: Low weight discrete logarithm and subset sum in \(2^{0.65n}\) with polynomial memory. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 94–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_4

    Chapter  Google Scholar 

  18. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 433–457. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2_16

    Chapter  Google Scholar 

  19. Esser, A., Zweydinger, F.: New time-memory trade-offs for subset sum - improving ISD in theory and practice. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 360–390. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_13

    Chapter  Google Scholar 

  20. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_13

    Chapter  Google Scholar 

  21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009). https://doi.org/10.1145/1536414.1536440

  22. Glaser, T., May, A.: How to enumerate LWE keys as narrow as in Kyber/dilithium. Cryptology ePrint Archive, Report 2022/1337 (2022). https://eprint.iacr.org/2022/1337

  23. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_31

    Chapter  Google Scholar 

  24. Hhan, M., Kim, J., Lee, C., Son, Y.: How to meet ternary LWE keys on Babai’s nearest plane. Cryptology ePrint Archive (2022)

    Google Scholar 

  25. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  26. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_9

    Chapter  Google Scholar 

  27. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12

    Chapter  Google Scholar 

  28. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-speed key encapsulation from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 232–252. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66787-4_12

    Chapter  Google Scholar 

  29. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  30. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  31. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_24

    Chapter  Google Scholar 

  32. Nguyen, D.H., Nguyen, T.T., Duong, T.N., Pham, P.H.: Cryptanalysis of MD5 on GPU cluster. In: Proceedings of International Conference on Information Security and Artificial Intelligence, vol. 2, pp. 910–914 (2010)

    Google Scholar 

  33. Niederhagen, R., Ning, K.-C., Yang, B.-Y.: Implementing Joux-Vitse’s crossbred algorithm for solving \({\cal{M}\cal{Q}}\) systems over \({\mathbb{F}}_2\) on GPUs. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 121–141. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_6

    Chapter  Google Scholar 

  34. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press (2009). https://doi.org/10.1145/1536414.1536461

  35. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005). https://doi.org/10.1145/1060590.1060603

  37. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36

    Chapter  Google Scholar 

  38. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

    Article  MathSciNet  Google Scholar 

  39. van Vredendaal, C.: Reduced memory meet-in-the-middle attack against the NTRU private key. LMS J. Comput. Math. 19(A), 43–57 (2016). https://doi.org/10.1112/S1461157016000206

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esser, A., Girme, R., Mukherjee, A., Sarkar, S. (2023). Memory-Efficient Attacks on Small LWE Keys. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14441. Springer, Singapore. https://doi.org/10.1007/978-981-99-8730-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8730-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8729-0

  • Online ISBN: 978-981-99-8730-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics