Abstract
The LWE problem is one of the prime candidates for building the most efficient post-quantum secure public key cryptosystems. Many of those schemes, like Kyber, Dilithium or those belonging to the NTRU-family, such as NTRU-HPS, -HRSS, BLISS or GLP, make use of small max norm keys to enhance efficiency. The presumably best attack on these schemes is a hybrid attack, which combines combinatorial techniques and lattice reduction. While lattice reduction is not known to be able to exploit the small max norm choices, May recently showed (Crypto 2021) that such choices allow for more efficient combinatorial attacks.
However, these combinatorial attacks suffer enormous memory requirements, which render them inefficient in realistic attack scenarios and, hence, make their general consideration when assessing security questionable. Therefore, more memory-efficient substitutes for these algorithms are needed. In this work, we provide new combinatorial algorithms for recovering small max norm LWE secrets using only a polynomial amount of memory. We provide analyses of our algorithms for secret key distributions of current NTRU, Kyber and Dilithium variants, showing that our new approach outperforms previous memory-efficient algorithms. For instance, considering uniformly random ternary secrets of length n we improve the best known time complexity for polynomial memory algorithms from \(2^{1.063n}\) down-to \(2^{0.926n}\). We obtain even larger gains for LWE secrets in \(\{-m,\ldots ,m\}^n\) with \(m=2,3\) as found in Kyber and Dilithium. For example, for uniformly random keys in \(\{-2,\ldots ,2\}^n\) as is the case for Dilithium we improve the previously best time from \(2^{1.742n}\) down-to \(2^{1.282n}\).
Our fastest algorithm incorporates various different algorithmic techniques, but at its heart lies a nested collision search procedure inspired by the Nested-Rho technique from Dinur, Dunkelman, Keller and Shamir (Crypto 2016). Additionally, we heavily exploit the representation technique originally introduced in the subset sum context to make our nested approach efficient.
A. Esser—Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID MA 2536/12.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Best runtime results from May [31] are slightly less than the square of current lattice complexities.
- 2.
Since May’s algorithm performance is worse towards high weights, we considered for this comparison only weights \(w/n\le \frac{2}{3}\).
- 3.
The precise choice of \(\mathcal {T}_i\) depends on the specific instantiation and is described later.
- 4.
The concrete choice of \(\mathcal {D}_i\), similar to the function domains \(\mathcal {T}_i\), depends on the instantiation and is specified later.
- 5.
We have to count the appearances of 1 (resp. 2) entries on the left (or right) of the possible representations given in Eq. (12).
References
Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-Henríquez, F.: On the cost of computing isogenies between supersingular elliptic curves. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp. 322–343. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-7_15
Albrecht, M.R., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_6
Albrecht, M.R., Bai, S., Fouque, P.-A., Kirchner, P., Stehlé, D., Wen, W.: Faster enumeration-based lattice reduction: root hermite factor \(k^{1/(2k)}\) Time \(k^{k/8+o(k)}\). In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 186–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_7
Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knapsacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_21
Bellini, E., et al.: Parallel isogeny path finding with limited memory. In: Isobe, T., Sarkar, S. (eds.) INDOCRYPT 2022. LNCS, vol. 13774, pp. 294–316. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22912-1_13
Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime: reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_12
Bi, L., Lu, X., Luo, J., Wang, K.: Hybrid dual and meet-LWE attack. In: Nguyen, K., Yang, G., Guo, F., Susilo, W. (eds.) ACISP 2022. LNCS, vol. 13494, pp. 168–188. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22301-3_9
Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_22
Bos, J., et al.: Crystals-kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 353–367. IEEE (2018)
Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy reduction. Int. J. Appl. Cryptogr. 2(3), 212–228 (2012)
Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary syndrome decoding with large weight. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_18
Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and LPN algorithms via multiple collisions. In: Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 178–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35199-1_9
Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Memory-efficient algorithms for finding needles in haystacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 185–206. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_7
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Ducas, L., Stevens, M., van Woerden, W.P.J.: Advanced lattice sieving on GPUs, with tensor cores. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 249–279. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-77886-6_9
Esser, A., Girme, R., Mukherjee, A., Sarkar, S.: Memory-efficient attacks on small LWE keys. Cryptology ePrint Archive, Report 2023/243 (2023). https://eprint.iacr.org/2023/243
Esser, A., May, A.: Low weight discrete logarithm and subset sum in \(2^{0.65n}\) with polynomial memory. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 94–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_4
Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 433–457. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2_16
Esser, A., Zweydinger, F.: New time-memory trade-offs for subset sum - improving ISD in theory and practice. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 360–390. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_13
Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_13
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (2009). https://doi.org/10.1145/1536414.1536440
Glaser, T., May, A.: How to enumerate LWE keys as narrow as in Kyber/dilithium. Cryptology ePrint Archive, Report 2022/1337 (2022). https://eprint.iacr.org/2022/1337
Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_31
Hhan, M., Kim, J., Lee, C., Son, Y.: How to meet ternary LWE keys on Babai’s nearest plane. Cryptology ePrint Archive (2022)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_9
Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12
Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-speed key encapsulation from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 232–252. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66787-4_12
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_24
Nguyen, D.H., Nguyen, T.T., Duong, T.N., Pham, P.H.: Cryptanalysis of MD5 on GPU cluster. In: Proceedings of International Conference on Information Security and Artificial Intelligence, vol. 2, pp. 910–914 (2010)
Niederhagen, R., Ning, K.-C., Yang, B.-Y.: Implementing Joux-Vitse’s crossbred algorithm for solving \({\cal{M}\cal{Q}}\) systems over \({\mathbb{F}}_2\) on GPUs. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 121–141. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_6
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press (2009). https://doi.org/10.1145/1536414.1536461
Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005). https://doi.org/10.1145/1060590.1060603
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816
van Vredendaal, C.: Reduced memory meet-in-the-middle attack against the NTRU private key. LMS J. Comput. Math. 19(A), 43–57 (2016). https://doi.org/10.1112/S1461157016000206
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Esser, A., Girme, R., Mukherjee, A., Sarkar, S. (2023). Memory-Efficient Attacks on Small LWE Keys. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14441. Springer, Singapore. https://doi.org/10.1007/978-981-99-8730-6_3
Download citation
DOI: https://doi.org/10.1007/978-981-99-8730-6_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8729-0
Online ISBN: 978-981-99-8730-6
eBook Packages: Computer ScienceComputer Science (R0)