Skip to main content

Algebraic Attacks on Round-Reduced Rain and Full AIM-III

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Abstract

Picnic is a NIST PQC Round 3 Alternate signature candidate that builds upon symmetric primitives following the MPC-in-the-head paradigm. Recently, researchers have been exploring more secure/efficient signature schemes from conservative one-way functions based on AES, or new low-complexity one-way functions like Rain (CCS 2022) and AIM (CCS 2023 and Round 1 Additional Signatures announced by NIST PQC). The signature schemes based on Rain and AIM are currently the most efficient among MPC-in-the-head-based schemes, making them promising post-quantum digital signature candidates.

However, the exact hardness of these new one-way functions deserves further study and scrutiny. This work presents algebraic attacks on Rain and AIM for certain instances, where one-round Rain can be compromised in \(2^{n/2}\) for security parameter \(n\in \{128,192,256\}\), and two-round Rain can be broken in \(2^{120.3}\), \(2^{180.4}\), and \(2^{243.1}\) encryptions, respectively. Additionally, we demonstrate an attack on AIM-III (which aims at 192-bit security) with a complexity of \(2^{186.5}\) encryptions. These attacks exploit the algebraic structure of the power function over fields with characteristic 2, which provides potential insights into the algebraic structures of some symmetric primitives and thus might be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://csrc.nist.gov/projects/post-quantum-cryptography.

  2. 2.

    The one-wayness of \(H(k) = E_k(P)\) is equivalent to the key recovery security of E with a single plaintext/ciphertext pair: see [20] for a proof.

  3. 3.

    https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

  4. 4.

    We refer interested readers to a faster implementation utilizing SIMD instructions for Rain (https://github.com/IAIK/rainier-signatures).

References

  1. Albrecht, M.R., et al.: Algebraic cryptanalysis of STARK-friendly designs: application to MARVELlous and MiMC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 371–397. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_13

    Chapter  Google Scholar 

  2. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7

    Chapter  Google Scholar 

  3. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symm. Cryptol. 2020(3), 1–45 (2020). https://doi.org/10.13154/tosc.v2020.i3.1-45

  4. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-friendly family of cryptographic primitives. Cryptology ePrint Archive, Report 2018/1098 (2018). https://eprint.iacr.org/2018/1098

  5. Banik, S., Barooti, K., Vaudenay, S., Yan, H.: New attacks on LowMC instances with a single plaintext/ciphertext pair. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 303–331. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_11

    Chapter  Google Scholar 

  6. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_11

    Chapter  Google Scholar 

  7. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1825–1842. ACM Press (2017). https://doi.org/10.1145/3133956.3133997

  8. Cheon, J.H., Lee, D.H.: Resistance of S-boxes against algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 83–93. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_6

    Chapter  Google Scholar 

  9. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 1–6 (1987)

    Google Scholar 

  10. Courtois, N., Debraize, B., Garrido, E.: On exact algebraic [non-]immunity of S-boxes based on power functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 06. LNCS, vol. 4058, pp. 76–86. Springer, Heidelberg (Jul (2006)

    Google Scholar 

  11. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_27

    Chapter  Google Scholar 

  12. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_17

    Chapter  Google Scholar 

  13. Daemen, J.: Limitations of the even-Mansour construction. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_46

    Chapter  Google Scholar 

  14. de Saint Guilhem, C.D., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: using AES in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 669–692. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_27

    Chapter  Google Scholar 

  15. de Saint Guilhem, C., Orsini, E., Tanguy, T.: Limbo: efficient zero-knowledge MPCitH-based arguments. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 3022–3036. ACM Press (2021). https://doi.org/10.1145/3460120.3484595

  16. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks on 3-round Even-Mansour, 8-step LED-128, and full AES2. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 337–356. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_18

    Chapter  Google Scholar 

  17. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Cryptanalysis of iterated even-Mansour schemes with two keys. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 439–457. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_23

    Chapter  Google Scholar 

  18. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on LowMC. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 535–560. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_22

    Chapter  Google Scholar 

  19. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of LowMC. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 87–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30840-1_6

    Chapter  Google Scholar 

  20. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter signatures based on tailor-made minimalist symmetric-key crypto. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 843–857. ACM Press (2022). https://doi.org/10.1145/3548606.3559353

  21. Dunkelman, O., Keller, N., Shamir, A.: Slidex attacks on the Even-Mansour encryption scheme. J. Cryptol. 28(1), 1–28 (2015). https://doi.org/10.1007/s00145-013-9164-7

    Article  MathSciNet  Google Scholar 

  22. Gupta, K.C., Ray, I.G.: Finding biaffine and quadratic equations for s-boxes based on power mappings. IEEE Trans. Inf. Theory 61(4), 2200–2209 (2015). https://doi.org/10.1109/TIT.2014.2387052

    Article  MathSciNet  Google Scholar 

  23. Hülsing, A., et al.: SPHINCS+. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press (2007). https://doi.org/10.1145/1250790.1250794

  25. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press (2018). https://doi.org/10.1145/3243734.3243805

  26. Kim, S., et al.: AIM: symmetric primitive for shorter signatures with stronger security. Cryptology ePrint Archive, Report 2022/1387 (2022). https://eprint.iacr.org/2022/1387

  27. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_2

    Chapter  Google Scholar 

  28. Liu, F., Isobe, T., Meier, W.: Cryptanalysis of full LowMC and LowMC-M with algebraic techniques. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 368–401. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_13

    Chapter  Google Scholar 

  29. Liu, F., Mahzoun, M.: Algebraic attacks on RAIN and AIM using equivalent representations. IACR Cryptol. ePrint Arch. p. 1133 (2023). https://eprint.iacr.org/2023/1133

  30. Liu, F., Meier, W., Sarkar, S., Isobe, T.: New low-memory algebraic attacks on LowMC in the Picnic setting. IACR Trans. Symm. Cryptol. 2022(3), 102–122 (2022). https://doi.org/10.46586/tosc.v2022.i3.102-122

  31. Liu, F., Sarkar, S., Meier, W., Isobe, T.: Algebraic attacks on rasta and dasta using low-degree equations. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 214–240. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_8

    Chapter  Google Scholar 

  32. Liu, F., Sarkar, S., Wang, G., Meier, W., Isobe, T.: Algebraic meet-in-the-middle attack on LowMC. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part I. LNCS, vol. 13791, pp. 225–255. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22963-3_8

  33. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  34. Mullen, G.L., Panario, D.: Handbook of Finite Fields. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  35. Nawaz, Y., Gupta, K.C., Gong, G.: Algebraic immunity of s-boxes based on power mappings: analysis and construction. IEEE Trans. Inf. Theory 55(9), 4263–4273 (2009). https://doi.org/10.1109/TIT.2009.2025534

    Article  MathSciNet  Google Scholar 

  36. Nikolić, Ivica, Wang, Lei, Wu, Shuang: Cryptanalysis of round-reduced LED. In: Moriai, Shiho (ed.) FSE 2013. LNCS, vol. 8424, pp. 112–129. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_7

  37. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and Technology (2022), available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  38. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of low-data instances of full LowMCv2. IACR Trans. Symm. Cryptol. 2018(3), 163–181 (2018). https://doi.org/10.13154/tosc.v2018.i3.163-181

  39. Srivastava, V., Baksi, A., Debnath, S.K.: An overview of hash based signatures. IACR Cryptol. ePrint Arch. p. 411 (2023). https://eprint.iacr.org/2023/411

  40. Strassen, V., et al.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Yu Yu was supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309705) and the National Natural Science Foundation of China (Grant Nos. 62125204 and 92270201). This work was also supported in part by the National Key Research and Development Program of China (Grant No. 2018YFA0704701) and the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008). This work has been supported by the New Cornerstone Science Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyi Zhang .

Editor information

Editors and Affiliations

A Toy Examples of Attacks on Reduced-Round Rain

A Toy Examples of Attacks on Reduced-Round Rain

In this section, we concretely present toy examples for one-round Rain and two-round Rain, which would help the readers understand our attacks via examples. We choose the field \(\mathbb F _{2^4}\) with irreducible polynomial \(f(x)=x^4+x+1\).

Notation. For an element \(a_0+a_1x+a_2x^2+a_3x^3\) of field \(\mathbb F _{2^4}\), \(a_i\in \mathbb F _2\), we may express it in several equivalent forms:

  1. 1.

    Polynomial representation, i.e. \(a_0+a_1x+a_2x^2+a_3x^3\).

  2. 2.

    Binary representation, i.e. \(a_0a_1a_2a_3\).

  3. 3.

    Vector of \(\mathbb F _2\), i.e. \((a_0,a_1,a_2,a_3)\)

Concretely, \(1+x+x^3\) is equivalent to 1101 or (1, 1, 0, 1). And 1 is equivalent to 1000 or (1, 0, 0, 0). We also use the notation \((1,1,0,1)^2=(1+x+x^3)^2=1+x^3=(1,0,0,1)\)

Power Function. We first show the square function over \(\mathbb F _{2^4}\) is linear.

$$\begin{aligned} & (a_0+a_1x+a_2x^2+a_3x^3)^2 \bmod f(x) \\ & = (a_0+a_1x^2+a_2x^4+a_3x^6) \bmod f(x) \\ & = a_0+a_1x^2+a_2(x+1)+a_3(x^3+x^2) \\ & = (a_0+a_2)+a_2x+(a_1+a_3)x^2+a_3x^3 \end{aligned}$$

So we can use the notation \((a_0,a_1,a_2,a_3)^2=(a_0+a_2,a_2,a_1+a_3,a_3)\). Similarly, we can have \((a_0,a_1,a_2,a_3)^4=(a_0+a_1+a_2+a_3,a_1+a_3,a_2+a_3,a_3)\).

Parameter Sets. We choose \(P=0000,c^{(1)}=0010,c^{(2)}=0001,k=0100\) and

$$M_1=\begin{bmatrix} 1 &{} 0 &{} 1 &{} 0\\ 0 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 1 &{} 0\\ 1 &{} 0 &{} 0 &{} 1\\ \end{bmatrix}, \quad M_2=\begin{bmatrix} 1 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 1 &{} 0\\ 0 &{} 1 &{} 0 &{} 0\\ 1 &{} 0 &{} 0 &{} 1\\ \end{bmatrix}, \quad M_2^{-1}=\begin{bmatrix} 1 &{} 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 1 &{} 0\\ 0 &{} 1 &{} 0 &{} 0\\ 1 &{} 0 &{} 1 &{} 1\\ \end{bmatrix} . $$

For convenience, we precompute some values and list them on Table 6. Let \(d=3\). As you can see, \(x^d,x\ne 0\) takes only \(15/3=5\) possible choices.

Table 6. Table for \(\mathbb F _{2^4}\).

1.1 A.1 One-Round Rain

The encryption of one-round Rain (Fig. 6) is :

$$\begin{aligned} P=0000 \xrightarrow {\oplus k \oplus c^{(1)}} 0110 \xrightarrow {x^{-1}}1110 \xrightarrow {M_1(\cdot )} 0111 \xrightarrow {\oplus k} 0011=C . \end{aligned}$$
(6)

We guess the value of \((P+k+c^{(1)})^3\) over \((2^4-1)/3=5\) possible choices. Suppose we guess \((P+k+c^{(1)})^3=1\). The following steps will be repeated for each guess, here we only show the execution for the correct guess which is \((P+k+c^{(1)})^3=1\). So we have

$$\begin{aligned} (P+k+c^{(1)})^{-1} & =(P+k+c^{(1)})^{14} \nonumber \\ & =(P+k+c^{(1)})^{3\cdot 4} \cdot (P+k+c^{(1)})^2 \nonumber \\ & =(P+k+c^{(1)})^2 \nonumber \\ & =(k_0,k_1,k_2+ 1,k_3)^2 \nonumber \\ & =(k_0+ k_2+ 1,k_2+ 1,k_1+ k_3,k_3) \end{aligned}$$
(7)
$$\begin{aligned} \xrightarrow {M_1(\cdot )} & (k_0+ k_1+ k_2+ k_3+ 1,k_2+ 1,k_1+ k_3,k_0+ k_2+ k_3+ 1) \nonumber \\ \xrightarrow {\oplus k} & (k_1+ k_2+ k_3+ 1,k_1+ k_2+ 1,k_1+ k_2+ k_3,k_0+ k_2+ 1) \nonumber \\ & = (0,0,1,1) \nonumber \\ & = C \end{aligned}$$

By solving the linear equations, we can obtain two candidate keys \(k^*=0100\) and \(k^{**}=0010\). Given the public input P and output C, it is easy to check by executing the one-round encryption in Eq. (6) that \(k^*\) is the correct key.

Fig. 6.
figure 6

Rain permutation with \(r=1\).

1.2 A.2 Two-Round Rain

We follow the notations and the parameter choices as in the attack on one-round Rain. The encryption of two-round Rain (Fig. 7) is :

Fig. 7.
figure 7

Rain permutation with \(r=2\).

figure b
  • We linearize the first S-box by guessing \((P+k+c^{(1)})^3=1\) as in the previous attack on one-round. Then we have the following linear equations:

    $$\begin{aligned} 0 & =(P+k+c^{(1)})^4 + (P+k+c^{(1)}) \\ & = (k_0,k_1,k_2+1,k_3)^4 + (k_0,k_1,k_2+1,k_3) \\ & = (k_0+k_1+k_2+k_3+1,k_1+k_3,k_2+k_3+1,k_3) + (k_0,k_1,k_2+1,k_3) \\ & = (k_1+k_2+k_3+1,k_3,k_3,0) \end{aligned}$$

    This gives us two linearly independent equations:

    $$ \left\{ \begin{array}{rl} k_1+k_2&{}=1\\ k_3&{}=0\\ \end{array} \right. $$

    Consequently, we can decide on two free variables \(k_0,k_2\) and two basic variables \(k_1=k_2+1,k_3=0\).

  • Next, we compute the input of the second S-box \(M_1(P+k+c^{(1)})^{-1}\). Substituting \(M_1\) as we choose and substituting the expression of \((P+k+c^{(1)})^{-1}\) as in Eq. (7), we get the following

    figure c

    Backward, represent the output of the second S-box and we have

    figure d

    Because the multiplication of the input and the output of the second S-box equals 1, thus we can write down the following quadratic equations:

    $$\begin{aligned} (0,0,1,k_0+k_2)\cdot (k_0+k_2+1,k_2,k_2+1,k_0+k_2+1) &= 1\\ \rightarrow (k_0k_2+1,k_2,k_0k_2+k_0,k_2)&= 1 \end{aligned}$$

    By solving the linear equation, we can obtain a candidate key \(k^*=0100\). Given the public input P and the output C, it is easy to check that \(k^*\) is the correct key by executing two-round Rain encryption.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Wang, Q., Yu, Y., Guo, C., Cui, H. (2023). Algebraic Attacks on Round-Reduced Rain and Full AIM-III. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14440. Springer, Singapore. https://doi.org/10.1007/978-981-99-8727-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8727-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8726-9

  • Online ISBN: 978-981-99-8727-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics