Skip to main content

Collagen and Gelatin from Fish Processing By-Products for Biomedical Applications

  • Chapter
  • First Online:
Fish Waste to Valuable Products

Part of the book series: Sustainable Materials and Technology ((SMT))

  • 182 Accesses

Abstract

Fish discards that otherwise constitute a threat to environmental health are also a reservoir of bioactive molecules, peptides, and polymers that hold immense potential for biomedical applications. Fish discards, including fish scales, skin, fins, tails, etc., are largely collagen proteins that can be easily isolated from these discards by simple isolation protocols. Endowed with several advantageous characteristics such as limited immunogenic properties, easy extractability, lower risk of zoonosis transmission, and biocompatibility, fish products-derived collagen and gelatin have emerged as an appropriate alternative for their mammalian counterparts. Using simple extraction techniques, fish-derived collagen and gelatin can be turned into scaffolds and constructs using cutting-edge technologies like 3D printing and electrospinning, among others based on the therapeutic demands of the concerned tissue for various tissue engineering applications. Although these two natural polymers made from fish also have weak mechanical qualities, these flaws have been painstakingly fixed as a result of the latest technical breakthroughs, maximizing their utility. The role of fish collagen and gelatin in drug delivery wound healing and therapeutics is indispensable which signifies their importance in the commercial aspect. Entwined with technology, these discards or by-products could be viably transformed into value-added products that can immensely contribute to the biomedical sector simultaneously abating the burden on the marine and soil environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn H, Gong DJ, Lee HH, Seo JY, Song K-M, Eom SJ, Yeo SY (2021) Mechanical properties of porcine and fish skin-based collagen and conjugated collagen fibers. Polymers 13:2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurrekoetxea M, Garcia-Gallastegui P, Irastorza I, Luzuriaga J, Uribe-Etxebarria V, Unda F, Ibarretxe G (2015) Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front Physiol 6:289

    Google Scholar 

  • Bernhardt A, Paul B, Gelinsky M (2018) Biphasic scaffolds from marine collagens for regeneration of osteochondral defects. Mar Drugs 16:91

    Google Scholar 

  • Bermueller C, Schwarz S, Elsaesser AF, Sewing J, Baur N, von Bomhard A, Scheithauer M, Notbohm H, Rotter N (2013) Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 19:2201–2214. https://doi.org/10.1089/ten.TEA.2012.0650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calejo MT, Almeida AJ, Fernandes AI (2012) Exploring a new jellyfish collagen in the production of microparticles for protein delivery. J Microencapsul 29:520–531. https://doi.org/10.3109/02652048.2012.665089

  • Cao H, Chen M-M, Liu Y, Liu Y-Y, Huang Y-Q, Wang J-H, Chen J-D, Zhang Q-Q (2015) Fish collagen-based scaffold containing PLGA microspheres for controlled growth factor delivery in skin tissue engineering. Colloids Surf B 136:1098–1106

    Article  CAS  Google Scholar 

  • Capella-Monsonís H, Coentro JQ, Graceffa V, Wu Z, Zeugolis DI (2018) An experimental toolbox for characterization of mammalian collagen type I in biological specimens. Nat Protoc 13:507–529

    Google Scholar 

  • Chae JJ, Ambrose WM, Espinoza FA, Mulreany DG, Ng S, Takezawa T, Trexler MM, Schein OD, Chuck RS, Elisseeff JH (2015) Regeneration of corneal epithelium utilizing a collagen vitriol membrane in rabbit models for corneal stromal wound and limbal stem cell deficiency. Acta Ophthalmol 93:e57-66. https://doi.org/10.1111/aos.12503

    Article  CAS  PubMed  Google Scholar 

  • Chalamaiah M, Dinesh Kumar B, Hemalatha R, Jyothirmayi T (2012) Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem 135:3020–3038. https://doi.org/10.1016/j.foodchem.2012.06.100

    Article  CAS  PubMed  Google Scholar 

  • Chang B, Ahuja N, Ma C, Liu X (2017) Injectable scaffolds: preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep 111:1–26

    Google Scholar 

  • Cheung RCF, Ng TB, Wong JH (2015) Marine peptides: bioactivities and applications. Mar Drugs 13:4006–4043. https://doi.org/10.3390/md13074006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado LM, Shologu N, Fuller K, Zeugolis DI (2017) Acetic acid and pepsin result in high yield, high purity and low macrophage response collagen for biomedical applications. Biomed Mater 12:065009

    Google Scholar 

  • Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66. https://doi.org/10.1186/1741-7015-9-66

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinçer MT, Erdem ÖA, Kalkan H, Üçok MÇ (2016) Comparison of recovered carp scales (Cyprinus carpio) gelatin and commercial calf and pork skin gelatins Sazan pulu (Cyprinus carpio) kullanılarak elde edilen jelatin ve ticari dana ve domuz derisi jelatinlerinin kıyaslanması. Ege J Fish Aquat Sci 33:335–341

    Google Scholar 

  • Diogo GS, López-Senra EL, Pirraco RP, Canadas RF, Fernandes EM, Serra J, Pérez-Martín RI, Sotelo CG, Marques AP, González P (2018) Marine collagen/apatite composite scaffolds envisaging hard tissue applications. Mar Drugs 16:269

    Google Scholar 

  • Echave MC, Hernáez-Moya R, Iturriaga L, Pedraz JL, Lakshminarayanan R, Dolatshahi-Pirouz A, Taebnia N, Orive G (2019) Recent advances in gelatin-based therapeutics. Expert Opin Biol Ther 19:773–779. https://doi.org/10.1080/14712598.2019.1610383

    Article  CAS  PubMed  Google Scholar 

  • Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V (2017) Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129:188–198. https://doi.org/10.1016/j.biomaterials.2017.03.021

    Article  CAS  PubMed  Google Scholar 

  • Elango J, Lee JW, Wang S, Henrotin Y, de Val JEMS, Regenstein JM, Lim SY, Bao B, Wu W (2018) Evaluation of differentiated bone cells proliferation by blue shark skin collagen via biochemical for bone tissue engineering. Mar Drugs 16:E350. https://doi.org/10.3390/md16100350

  • Elias PM (2007) The skin barrier as an innate immune element. Semin Immunopathol 29:3–14

    Google Scholar 

  • El-Rashidy AA, Gad A, Abu-Hussein AE-HG, Habib SI, Badr NA, Hashem AA (2015) Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen. Int J Biol Macromol 79:618–626. https://doi.org/10.1016/j.ijbiomac.2015.05.019

    Article  CAS  PubMed  Google Scholar 

  • Evans M, Lewis ED, Zakaria N, Pelipyagina T, Guthrie N (2021) A randomized, triple-blind, placebo-controlled, parallel study to evaluate the efficacy of a freshwater marine collagen on skin wrinkles and elasticity. J Cosmet Dermatol 20:825–834. https://doi.org/10.1111/jocd.13676

    Article  PubMed  Google Scholar 

  • Fengxiang Z, Anning W, Zhihua L, Shengwen H, Lijun S (2011) Preparation and characterisation of collagen from freshwater fish scales. Food Nutr Sci 2(8):818–823

    Google Scholar 

  • Gauza-Włodarczyk M, Kubisz L, Mielcarek S, Włodarczyk D (2017) Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298–670 K. Mater Sci Eng, C 80:468–471

    Article  Google Scholar 

  • Govindharaj M, Roopavath UK, Rath SN (2019) Valorization of discarded Marine Eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering. J Clean Prod 230:412–419

    Google Scholar 

  • Gómez-guilløen MC, Montero P (2001) Extraction of gelatin from megrim (Lepidorhombus boscii) skins with several organic acids. J Food Sci 66:213–216

    Google Scholar 

  • Heo DN, Castro NJ, Lee S-J, Noh H, Zhu W, Zhang LG (2017) Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale 9:5055–5062. https://doi.org/10.1039/C6NR09652B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu H-H, Uemura T, Yamaguchi I, Ikoma T, Tanaka J (2016) Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen. J Biosci Bioeng 122:219–225. https://doi.org/10.1016/j.jbiosc.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  • Hu C-H, Yao C-H, Chan T-M, Huang T-L, Sen Y, Huang C-Y, Ho C-Y (2016) Effects of different concentrations of collagenous peptide from fish scales on osteoblast proliferation and osteoclast resorption. Chin J Physiol 59:191–201. https://doi.org/10.4077/CJP.2016.BAE398

    Article  CAS  PubMed  Google Scholar 

  • Huang C-Y, Kuo J-M, Wu S-J, Tsai H-T (2016) Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process. Food Chem 190:997–1006

    Google Scholar 

  • Ideia P, Pinto J, Ferreira R, Figueiredo L, Spínola V, Castilho PC (2020) Fish processing industry residues: a review of valuable products extraction and characterization methods. Waste Biomass Valorization 11:3223–3246

    Article  Google Scholar 

  • Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A (2020) Fish collagen: extraction, characterization, and applications for biomaterials engineering. Polymers 12:2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jana S, Datta P, Das H, Jaiswal S, Ghosh PR, Lahiri D, Kundu B, Nandi SK (2022b) Copper and cobalt doped bioactive glass-fish dermal collagen electrospun mat triggers key events of diabetic wound healing in full-thickness skin defect model. J Mech Behav Biomed Mater 134:105414

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Datta P, Das H, Ghosh PR, Kundu B, Nandi SK (2022a) Engineering vascularizing electrospun dermal grafts by integrating fish collagen and ion-doped bioactive glass. ACS Biomaterials Science & Engineering

    Google Scholar 

  • Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB, Lee YM (2007) Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28:1115–1122. https://doi.org/10.1016/j.biomaterials.2006.10.025

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Sun F, Zou Q, Huang J, Zuo Y, Li Y, Wang S, Cheng L, Man Y, Yang F (2019) Fish collagen and hydroxyapatite reinforced poly (lactide-co-glycolide) fibrous membrane for guided bone regeneration. Biomacromolecules 20:2058–2067

    Google Scholar 

  • Jridi M, Nasri R, Lassoued I, Souissi N, Mbarek A, Barkia A, Nasri M (2013) Chemical and biophysical properties of gelatins extracted from alkali-pretreated skin of cuttlefish (Sepia officinalis) using pepsin. Food Res Int 54:1680–1687

    Article  CAS  Google Scholar 

  • Kamble R, Shrangdher ST, Koli JM (2014) Physico-chemical properties of gelatin extracted from catla skin (Catla Catla) (Hamilton, 1822). Indian J Fundam Appl Life Sci 4:328–337

    Google Scholar 

  • Karayannakidis PD, Zotos A (2016) Fish processing by-products as a potential source of gelatin: a review. J Aquat Food Prod Technol 25:65–92

    Google Scholar 

  • Karim AA, Bhat R (2009) Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll 23:563–576

    Article  CAS  Google Scholar 

  • Kayal P, Jana S, Datta P, Das H, Kundu B, Nandi SK (2023) Microfibers of fish waste-derived collagen and ion-doped bioactive glass in stimulating the healing sequences in full-thickness cutaneous burn injury. J Drug Deliv Sci Technol 83:104429. https://doi.org/10.1016/j.jddst.2023.104429

    Article  CAS  Google Scholar 

  • Kim I-D, Sawicki E, Lee H-K, Lee E-H, Park HJ, Han P-L, Kim KK, Choi H, Lee J-K (2016) Robust neuroprotective effects of intranasally delivered iNOS siRNA encapsulated in gelatin nanoparticles in the postischemic brain. Nanomedicine 12:1219–1229. https://doi.org/10.1016/j.nano.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  • Kozlowska J, Sionkowska A, Skopinska-Wisniewska J, Piechowicz K (2015) Northern pike (Esox lucius) collagen: extraction, characterization and potential application. Int J Biol Macromol 81:220–227. https://doi.org/10.1016/j.ijbiomac.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  • Kozłowska J, Sionkowska A (2015) Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials. Int J Biol Macromol 74:397–403. https://doi.org/10.1016/j.ijbiomac.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni P, Maniyar M (2020) Utilization of fish collagen in pharmaceutical and biomedical industries: waste to wealth creation. Life Sci Inf Publ 6:11

    CAS  Google Scholar 

  • Li Y, Yang L, Wu S, Chen J, Lin H (2022) Structural, functional, rheological, and biological properties of the swim bladder collagen extracted from grass carp (Ctenopharyngodon idella). LWT—Food Sci Technol 153:112518

    Google Scholar 

  • Lim Y-S, Ok Y-J, Hwang S-Y, Kwak J-Y, Yoon S (2019) Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs 17:467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Sun J (2014) Potential application of hydrolyzed fish collagen for inducing the multidirectional differentiation of rat bone marrow mesenchymal stem cells. Biomacromolecules 15:436–443. https://doi.org/10.1021/bm401780v

    Article  CAS  PubMed  Google Scholar 

  • Mredha MTI, Kitamura N, Nonoyama T, Wada S, Goto K, Zhang X, Nakajima T, Kurokawa T, Takagi Y, Yasuda K (2017) Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Biomaterials 132:85–95

    Google Scholar 

  • Muralidharan N, Jeya Shakila R, Sukumar D, Jeyasekaran G (2013) Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J Food Sci Technol 50:1106–1113. https://doi.org/10.1007/s13197-011-0440-y

  • Muthukumar T, Prabu P, Ghosh K, Sastry TP (2014) Fish scale collagen sponge incorporated with Macrotyloma uniflorum plant extract as a possible wound/burn dressing material. Colloids Surf B Biointerfaces 113:207–212. https://doi.org/10.1016/j.colsurfb.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  • Muyonga JH, Cole CGB, Duodu KG (2004) Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocoll 18:581–592

    Article  CAS  Google Scholar 

  • Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material—skin, bone and fins. Food Chem 68:277–281

    Article  CAS  Google Scholar 

  • Nicklas M, Schatton W, Heinemann S, Hanke T, Kreuter J (2009) Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17beta-estradiol-hemihydrate. Drug Dev Ind Pharm 35:1035–1042. https://doi.org/10.1080/03639040902755213

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto S, Goto Y, Morishige H, Shiraishi R, Doi M, Akiyama K, Yamauchi S, Sugahara T (2008) Mode of action of the immunostimulatory effect of collagen from jellyfish. Biosci Biotechnol Biochem 72:2806–2814

    Google Scholar 

  • Niu L, Zhou X, Yuan C, Bai Y, Lai K, Yang F, Huang Y (2013) Characterization of tilapia (Oreochromis niloticus) skin gelatin extracted with alkaline and different acid pretreatments. Food Hydrocolloids 33:336–341

    Article  CAS  Google Scholar 

  • Ohnishi A, Osaki T, Matahira Y, Tsuka T, Imagawa T, Okamoto Y, Minami S (2013) Evaluation of the chondroprotective effects of glucosamine and fish collagen peptide on a rabbit ACLT model using serum biomarkers. J Vet Med Sci 75:421–429. https://doi.org/10.1292/jvms.12-0240

    Article  CAS  PubMed  Google Scholar 

  • Oryan A, Alemzadeh E, Moshiri A (2017) Burn wound healing: present concepts, treatment strategies and future directions. J Wound Care 26:5–19. https://doi.org/10.12968/jowc.2017.26.1.5

  • Pal P, Srivas PK, Dadhich P, Das B, Maity PP, Moulik D, Dhara S (2016) Accelerating full thickness wound healing using collagen sponge of mrigal fish (Cirrhinus cirrhosus) scale origin. Int J Biol Macromol 93:1507–1518. https://doi.org/10.1016/j.ijbiomac.2016.04.032

    Article  CAS  PubMed  Google Scholar 

  • Pati F, Adhikari B, Dhara S (2010) Isolation and characterization of fish scale collagen of higher thermal stability. Biores Technol 101:3737–3742. https://doi.org/10.1016/j.biortech.2009.12.133

    Article  CAS  Google Scholar 

  • Pati F, Datta P, Adhikari B, Dhara S, Ghosh K, Das Mohapatra PK (2012) Collagen scaffolds derived from fresh water fish origin and their biocompatibility. J Biomed Mater Res A 100:1068–1079. https://doi.org/10.1002/jbm.a.33280

    Article  CAS  PubMed  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotech 16:71. https://doi.org/10.1186/s12951-018-0392-8

  • Peng X, Xu J, Tian Y, Liu W, Peng B (2020) Marine fish peptides (collagen peptides) compound intake promotes wound healing in rats after cesarean section. Food Nutr Res. https://doi.org/10.29219/fnr.v64.4247

  • Raabe O, Reich C, Wenisch S, Hild A, Burg-Roderfeld M, Siebert HC, Arnhold S (2010) Hydrolyzed fish collagen induced chondrogenic diVerentiation of equine adipose tissue-derived stromal cells. Histochem Cell Biol 134:545–554

    Google Scholar 

  • Ran X-G, Wang L-Y (2014) Use of ultrasonic and pepsin treatment in tandem for collagen extraction from meat industry by-products. J Sci Food Agric 94:585–590

    Article  CAS  PubMed  Google Scholar 

  • Rigby BJ (1968) Amino-acid composition and thermal stability of the skin collagen of the Antarctic ice-fish. Nature 219:166–167

    Article  CAS  PubMed  Google Scholar 

  • Sanaei AV, Mahmoodani F, See SF, Yusop SM, Babji AS (2013) Optimization of gelatin extraction and physico-chemical properties of catfish (Clarias gariepinus) bone gelatin. Int Food Res J 20:423

    CAS  Google Scholar 

  • See SF, Hong PK, Ng KL, Wan Aida WM, Babji AS (2010) Physicochemical properties of gelatins extracted from skins of different freshwater fish species. Int Food Res J 17:809–816

    Google Scholar 

  • Serbo JV, Gerecht S (2013) Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis. Stem Cell Res Ther 4:8. https://doi.org/10.1186/scrt156

    Article  PubMed  PubMed Central  Google Scholar 

  • Sghayyar HN, Lim SS, Ahmed I, Lai JY, Cheong XY, Chong ZW, Lim AFX, Loh H-S (2020) Fish biowaste gelatin coated phosphate-glass fibres for wound-healing application. Eur Polymer J 122:109386

    Article  CAS  Google Scholar 

  • Shakila RJ, Jeevithan E, Varatharajakumar A, Jeyasekaran G, Sukumar D (2012) Functional characterization of gelatin extracted from bones of red snapper and grouper in comparison with mammalian gelatin. LWT-Food Sci Technol 48:30–36

    Article  Google Scholar 

  • Sionkowska A, Kozłowska J (2013) Properties and modification of porous 3-D collagen/hydroxyapatite composites. Int J Biol Macromol 52:250–259. https://doi.org/10.1016/j.ijbiomac.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  • Sionkowska A, Skrzyński S, Śmiechowski K, Kołodziejczak A (2017) The review of versatile application of collagen. Polym Adv Technol 28:4–9. https://doi.org/10.1002/pat.3842

    Article  CAS  Google Scholar 

  • Skierka E, Sadowska M, Karwowska A (2007) Optimization of condition for demineralization Baltic cod (Gadus morhua) backbone. Food Chem 105:215–218

    Article  CAS  Google Scholar 

  • Song E, Kim SY, Chun T, Byun H-J, Lee YM (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27:2951–2961

    Google Scholar 

  • Sugahara T, Ueno M, Goto Y, Shiraishi R, Doi M, Akiyama K, Yamauchi S (2006) Immunostimulation effect of jellyfish collagen. Biosci Biotechnol Biochem 70:2131–2137. https://doi.org/10.1271/bbb.60076

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Saito T (2015) Biocompatibility of novel type I collagen purified from tilapia fish scale: an in vitro comparative study. Biomed Res Int 2015:e139476. https://doi.org/10.1155/2015/139476

    Article  CAS  Google Scholar 

  • van Essen TH, Lin CC, Hussain AK, Maas S, Lai HJ, Linnartz H, van den Berg TJTP, Salvatori DCF, Luyten GPM, Jager MJ (2013) A fish scale-derived collagen matrix as artificial cornea in rats: properties and potential. Invest Ophthalmol Vis Sci 54:3224–3233. https://doi.org/10.1167/iovs.13-11799

    Article  PubMed  Google Scholar 

  • Venugopal V (2021) Valorization of seafood processing discards: bioconversion and bio-refinery approaches. Front Sustain Food Syst 5

    Google Scholar 

  • Wang J-H, Hung C-H, Young T-H (2006) Proliferation and differentiation of neural stem cells on lysine–alanine sequential polymer substrates. Biomaterials 27:3441–3450. https://doi.org/10.1016/j.biomaterials.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Peng X-L, Li H-R, Liu J-X, Cheng J-S-Y, Qi X-Y, Ye S-J, Gong H-L, Zhao X-H, Yu J, Xu G, Wei D-X (2021) Marine-derived collagen as biomaterials for human health. Front Nutr 8:702108. https://doi.org/10.3389/fnut.2021.702108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Nagaoka H, Terajima M, Tsuda N, Hayashi Y, Yamauchi M (2013) Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dent Mater J 32:88–95. https://doi.org/10.4012/dmj.2012-220

  • Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y (2014) Potency of fish collagen as a scaffold for regenerative medicine. BioMed Res Int 2014

    Google Scholar 

  • Yamaguchi K, Lavéty J, Love RM (1976) The connective tissues of fish VIII. Comparative studies on hake, cod and catfish collagens. Int J Food Sci Technol 11:389–399. https://doi.org/10.1111/j.1365-2621.1976.tb00737.x

    Article  CAS  Google Scholar 

  • Yu C-C, Chang J-J, Lee Y-H, Lin Y-C, Wu M-H, Yang M-C, Chien C-T (2013) Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Mater Lett 93:133–136. https://doi.org/10.1016/j.matlet.2012.11.040

    Article  CAS  Google Scholar 

  • Zeugolis DI, Paul RG, Attenburrow G (2008) Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: animal species and collagen extraction method. J Biomed Mater Res Part A: Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 86:892–904

    Google Scholar 

  • Zhao X, Song W, Chen Y, Liu S, Ren L (2018) Collagen-based materials combined with microRNA for repairing cornea wounds and inhibiting scar formation. Biomater Sci 7:51–62. https://doi.org/10.1039/C8BM01054D

    Article  PubMed  Google Scholar 

  • Zhou T, Liu X, Sui B, Liu C, Mo X, Sun J (2017a) Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration. Biomed Mater 12:055004. https://doi.org/10.1088/1748-605X/aa7b55

    Article  PubMed  Google Scholar 

  • Zhou T, Sui B, Mo X, Sun J (2017b) Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int J Nanomedicine 12:3495–3507. https://doi.org/10.2147/IJN.S132459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the support of the Vice-Chancellor of Adamas University in Barasat, North 24 Parganas, and West Bengal University of Animal and Fishery Sciences in Kolkata, India. The authors also acknowledge the kind support of the ICAR National Professor project of the Indian Council of Agricultural Research, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Kumar Nandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jana, S., Das, P., Ghosh, P.R., Nandi, S.K. (2024). Collagen and Gelatin from Fish Processing By-Products for Biomedical Applications. In: Maqsood, S., Naseer, M.N., Benjakul, S., Zaidi, A.A. (eds) Fish Waste to Valuable Products. Sustainable Materials and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-8593-7_6

Download citation

Publish with us

Policies and ethics