Skip to main content

Infrared and Visible Image Fusion via Test-Time Training

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14434))

Included in the following conference series:

  • 500 Accesses

Abstract

Infrared and visible image fusion (IVIF) is a widely used technique in instrument-related fields. It aims at extracting contrast information from the infrared image and texture details from the visible image and combining these two kinds of information into a single image. Most auto-encoder-based methods train the network on natural images, such as MS-COCO, and test the model on IVIF datasets. This kind of method suffers from domain shift issues and cannot generalize well in real-world scenarios. To this end, we propose a self-supervised test-time training (TTT) approach to facilitate learning a better fusion result. Specifically, a new self-supervised loss is developed to evaluate the quality of the fusion result. This loss function directs the network to improve the fusion quality by optimizing model parameters with a small number of iterations in the test time. Besides, instead of manually designing fusion strategies, we leverage a fusion adapter to automatically learn fusion rules. Experimental comparisons on two public IVIF datasets validate that the proposed method outperforms existing methods subjectively and objectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aslantas, V., Bendes, E.: A new image quality metric for image fusion: the sum of the correlations of differences. Aeu-Inter. J. Electr. Commun. 69(12), 1890–1896 (2015)

    Article  Google Scholar 

  2. Das, S., Zhang, Y.: Color night vision for navigation and surveillance. Transp. Res. Rec. 1708(1), 40–46 (2000)

    Article  Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. Ieee (2009)

    Google Scholar 

  4. Gandelsman, Y., Sun, Y., Chen, X., Efros, A.: Test-time training with masked autoencoders. Adv. Neural. Inf. Process. Syst. 35, 29374–29385 (2022)

    Google Scholar 

  5. Gao, Y., Ma, S., Liu, J.: Dcdr-gan: a densely connected disentangled representation generative adversarial network for infrared and visible image fusion. IEEE Trans. Circ. Syst. Video Technol. (2022)

    Google Scholar 

  6. Li, H., Wu, X.J.: Densefuse: a fusion approach to infrared and visible images. IEEE Trans. Image Process. 28(5), 2614–2623 (2018)

    Article  MathSciNet  Google Scholar 

  7. Li, H., Wu, X.J., Durrani, T.: Nestfuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models. IEEE Trans. Instrum. Meas. 69(12), 9645–9656 (2020)

    Article  Google Scholar 

  8. Li, H., Wu, X.J., Kittler, J.: Infrared and visible image fusion using a deep learning framework. In: 2018 24th International Conference On Pattern Recognition (ICPR), pp. 2705–2710. IEEE (2018)

    Google Scholar 

  9. Li, H., Wu, X.J., Kittler, J.: Mdlatlrr: a novel decomposition method for infrared and visible image fusion. IEEE Trans. Image Process. 29, 4733–4746 (2020)

    Article  Google Scholar 

  10. Li, Q., et al.: A multilevel hybrid transmission network for infrared and visible image fusion. IEEE Trans. Instrum. Meas. 71, 1–14 (2022)

    Google Scholar 

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Lin, X., Zhou, G., Tu, X., Huang, Y., Ding, X.: Two-level consistency metric for infrared and visible image fusion. IEEE Trans. Instrum. Meas. 71, 1–13 (2022)

    Google Scholar 

  13. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2012)

    Article  Google Scholar 

  14. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 663–670 (2010)

    Google Scholar 

  15. Liu, H., Wu, Z., Li, L., Salehkalaibar, S., Chen, J., Wang, K.: Towards multi-domain single image dehazing via test-time training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5831–5840 (2022)

    Google Scholar 

  16. Ma, J., Chen, C., Li, C., Huang, J.: Infrared and visible image fusion via gradient transfer and total variation minimization. Inform. Fusion 31, 100–109 (2016)

    Article  Google Scholar 

  17. Ma, J., Xu, H., Jiang, J., Mei, X., Zhang, X.P.: Ddcgan: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 29, 4980–4995 (2020)

    Article  Google Scholar 

  18. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  19. Piella, G.: A general framework for multiresolution image fusion: from pixels to regions. Inform. Fusion 4(4), 259–280 (2003)

    Article  Google Scholar 

  20. Roberts, J.W., Van Aardt, J.A., Ahmed, F.B.: Assessment of image fusion procedures using entropy, image quality, and multispectral classification. J. Appl. Remote Sens. 2(1), 023522 (2008)

    Article  Google Scholar 

  21. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  22. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: International Conference on Machine Learning, pp. 9229–9248. PMLR (2020)

    Google Scholar 

  23. Tang, W., He, F., Liu, Y.: Ydtr: infrared and visible image fusion via y-shape dynamic transformer. IEEE Trans. Multimedia (2022)

    Google Scholar 

  24. Toet, A.: The tno multiband image data collection. Data Brief 15, 249–251 (2017)

    Article  Google Scholar 

  25. Vishwakarma, A.: Image fusion using adjustable non-subsampled shearlet transform. IEEE Trans. Instrum. Meas. 68(9), 3367–3378 (2018)

    Article  Google Scholar 

  26. Wang, Z., Wu, Y., Wang, J., Xu, J., Shao, W.: Res2fusion: infrared and visible image fusion based on dense res2net and double nonlocal attention models. IEEE Trans. Instrum. Meas. 71, 1–12 (2022)

    Article  Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers 2003, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  29. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2008)

    Article  Google Scholar 

  30. Xu, H., Ma, J., Jiang, J., Guo, X., Ling, H.: U2fusion: a unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 502–518 (2020)

    Article  Google Scholar 

  31. Zhang, Q., Fu, Y., Li, H., Zou, J.: Dictionary learning method for joint sparse representation-based image fusion. Opt. Eng. 52(5), 057006–057006 (2013)

    Article  Google Scholar 

  32. Zhang, X., Demiris, Y.: Visible and infrared image fusion using deep learning. IEEE Trans. Pattern Anal. Mach. Intell. (2023)

    Google Scholar 

  33. Zhang, X., Ye, P., Xiao, G.: Vifb: a visible and infrared image fusion benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 104–105 (2020)

    Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China under Grant 82172033, U19B2031, 61971369, 52105126, 82272071, 62271430, and the Fundamental Research Funds for the Central Universities 20720230104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghao Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, G., Fu, Z., Lin, X., Chu, X., Huang, Y., Ding, X. (2024). Infrared and Visible Image Fusion via Test-Time Training. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics