Skip to main content

Exploiting Adaptive Crop and Deformable Convolution for Road Damage Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14434))

Included in the following conference series:

Abstract

Road damage detection (RDD) based on computer vision plays an important role in road maintenance. Unlike conventional object detection, it is very challenging due to the irregular shape distribution and high similarity with the background. To address this issue, we propose a novel road damage detection algorithm from the perspective of optimizing data and enhancing feature learning. It consists of adaptive cropping, feature learning with deformable convolution, and a diagonal intersection over union loss function (XIOU). Adaptive cropping uses vanishing point estimation (VPE) to obtain the pavement reference position, and then effectively removes the redundant information of interference detection by cutting the raw image above the reference position. The feature learning module introduces deformable convolution to adjust the receptive field of road damage with irregular shape distribution, which will help enhance feature differentiation. The designed diagonal IOU loss function (XIOU) optimizes the road damage location by weighted calculation of the intersection and comparison between the predicted proposal and the groundtruth. Compared with existing methods, the proposed algorithm is more suitable for road damage detection task and has achieved excellent performance on authoritative RDD and CNRDD datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, X., Li, H., Yu, Y., Luo, X., Huang, T., Yang, X.: Automatic pixel-level crack detection and measurement using fully convolutional network. Comput. Civ. Infrastruct. Eng. 33, 1090–1109 (2018)

    Article  Google Scholar 

  2. Yu, G., Dong, J., Wang, Y., Zhou, X.: RUC-Net: a residual-Unet-based convolutional neural network for pixel-level pavement crack segmentation. Sensors 23, 53 (2023)

    Article  Google Scholar 

  3. Hascoet, T., Zhang, Y., Persch, A., Takashima, R., Takiguchi, T., Ariki, Y.: FasterRCNN monitoring of road damages: competition and deployment. In: Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020, pp. 5545–5552 (2020)

    Google Scholar 

  4. Vishwakarma, R., Vennelakanti, R.: CNN model tuning for global road damage detection. In: Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020, pp. 5609–5615 (2020)

    Google Scholar 

  5. Pei, Z., Lin, R., Zhang, X., Shen, H., Tang, J., Yang, Y.: CFM: a consistency filtering mechanism for road damage detection. In: Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020, pp. 5584–5591 (2020)

    Google Scholar 

  6. Zhang, X., Xia, X., Li, N., Lin, M., Song, J., Ding, N.: Exploring the tricks for road damage detection with a one-stage detector. In: Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020, pp. 5616–5621 (2020)

    Google Scholar 

  7. Mandal, V., Mussah, A.R., Adu-Gyamfifi, Y.: Deep learning frameworks for pavement distress classifification: a comparative analysis. In: Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020, pp. 5577–5583 (2020)

    Google Scholar 

  8. Guo, G., Zhang, Z.: Road damage detection algorithm for improved YOLOv5. Sci. Rep. 12, 15523 (2022)

    Article  Google Scholar 

  9. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017)

    Article  Google Scholar 

  10. Available online: https://github.com/ultralytics/yolov5. Accessed 5 Mar 2023

  11. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018, pp. 6154–6162 (2018)

    Google Scholar 

  12. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  13. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv: arXiv:2004.10934 (2020)

  14. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv: arXiv:2207.02696 (2022)

  15. Tan, M., Pang, R., Le, Q.V.: EffificientDet: scalable and effificient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020, pp. 10778–10787 (2020)

    Google Scholar 

  16. Hu, G.X., Hu, B.L., Yang, Z., Huang, L., Li, P.: Pavement crack detection method based on deep learning models. Wirel. Commun. Mob. Comput. 2021, 5573590 (2021)

    Article  Google Scholar 

  17. Zhang, H., et al.: A new road damage detection baseline with attention learning. Appl. Sci. 12, 7594 (2022)

    Article  MathSciNet  Google Scholar 

  18. Naddaf-Sh, S., Naddaf-Sh, M.M., Zargarzadeh, H., Kashanipour, A.R.: An efficient and scalable deep learning approach for road damage detection. arXiv: arXiv:2011.09577 (2020)

  19. Jeong, D.: Road damage detection using YOLO with smartphone images. In: Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020, pp. 5559–5562 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No.62002247 and the general project numbered KM202110028009 of Beijing Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, Y., Fu, C., Li, Z., Wang, L., Su, L., Jiang, N. (2024). Exploiting Adaptive Crop and Deformable Convolution for Road Damage Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics