Skip to main content

Adaptive Channel Pruning for Trainability Protection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Pruning is a widely used method for compressing neural networks, reducing their computational requirements by removing unimportant connections. However, many existing pruning methods prune pre-trained models by using the same pruning rate for each layer, neglecting the protection of model trainability and damaging accuracy. Additionally, the number of redundant parameters per layer in complex models varies, necessitating adjustment of the pruning rate according to model structure and training data. To overcome these issues, we propose a trainability-preserving adaptive channel pruning method that prunes during training. Our approach utilizes a model weight-based similarity calculation module to eliminate unnecessary channels while protecting model trainability and correcting output feature maps. An adaptive sparsity control module assigns pruning rates for each layer according to a preset target and aids network training. We performed experiments on CIFAR-10 and Imagenet classification datasets using networks of various structures. Our technique outperformed comparison methods at different pruning rates. Additionally, we confirmed the effectiveness of our technique on the object detection datasets VOC and COCO.

This work is supported by the National Natural Science Foundation of China under Grant U22A2043, and the Unveiling the list of hanging (science and technology research special) of Liaoning province under Grant 2022JH1/10400030.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J., Zhu, Z., Li, C., Zhao, Y.: Self-adaptive network pruning. In: International Conference on Neural Information Processing, pp. 175–186 (2019)

    Google Scholar 

  2. Elkerdawy, S., Elhoushi, M., Zhang, H., Ray, N.: Fire together wire together: a dynamic pruning approach with self-supervised mask prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12454–12463 (2022)

    Google Scholar 

  3. Gao, X., Zhao, Y., Dudziak, Ł., Mullins, R., Xu, C.Z.: Dynamic channel pruning: feature boosting and suppression. arXiv preprint: arXiv:1810.05331 (2018)

  4. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding yolo series in 2021. arXiv preprint: arXiv:2107.08430 (2021)

  5. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770–778 (2016)

    Google Scholar 

  7. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convolutional neural networks. IJCAI, 2234–2240 (2018)

    Google Scholar 

  8. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4335–4344 (2019)

    Google Scholar 

  9. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, P.H.: Pruning filters for efficient ConvNets. In: International Conference on Learning Representations (2017)

    Google Scholar 

  10. Liebenwein, L., Baykal, C., Lang, H., Feldman, D., Rus, D.: Provable filter pruning for efficient neural networks. ICLR (2020)

    Google Scholar 

  11. Lin, M., Cao, L., Zhang, Y., Shao, L., Lin, C.W., Ji, R.: Pruning networks with cross-layer ranking & k-reciprocal nearest filters. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  12. Lin, M., et al.: HRank: filter pruning using high-rank feature map. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1526–1535 (2020)

    Google Scholar 

  13. Lin, M., Ji, R., Zhang, Y., Zhang, B., Wu, Y., Tian, Y.: Channel pruning via automatic structure search. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 673–679. International Joint Conferences on Artificial Intelligence Organization (2020). main track

    Google Scholar 

  14. Luo, J.H., Wu, J.: AutoPruner: an end-to-end trainable filter pruning method for efficient deep model inference. Pattern Recogn. 107, 107461 (2020)

    Article  Google Scholar 

  15. Rachwan, J., Zügner, D., Charpentier, B., Geisler, S., Ayle, M., Günnemann, S.: Winning the lottery ahead of time: efficient early network pruning. In: International Conference on Machine Learning, pp. 18293–18309 (2022)

    Google Scholar 

  16. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19(1), 263–272 (2018)

    Article  Google Scholar 

  17. Saxe, A., McClelland, J., Ganguli, S.: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In: International Conference on Learning Represenatations (2014)

    Google Scholar 

  18. Su, X., et al.: Searching for network width with bilaterally coupled network. IEEE Trans. Pattern Anal. Mach. Intell. 45(7), 8936–8953 (2023)

    Google Scholar 

  19. Wang, H., Fu, Y.: Trainability preserving neural pruning. In: The Eleventh International Conference on Learning Representations (2023)

    Google Scholar 

  20. Ning, X., Zhao, T., Li, W., Lei, P., Wang, Yu., Yang, H.: DSA: more efficient budgeted pruning via differentiable sparsity allocation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 592–607. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_35

    Chapter  Google Scholar 

  21. Zhang, Y., et al.: Learning best combination for efficient n:M sparsity. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  22. Zhou, A., et al.: Learning n: M fine-grained structured sparse neural networks from scratch. ICLR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J. et al. (2024). Adaptive Channel Pruning for Trainability Protection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14434. Springer, Singapore. https://doi.org/10.1007/978-981-99-8549-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8549-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8548-7

  • Online ISBN: 978-981-99-8549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics