Skip to main content

An ANN-Guided Approach to Task-Free Continual Learning with Spiking Neural Networks

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14432))

Included in the following conference series:

  • 345 Accesses

Abstract

Task-Free Continual Learning (TFCL) poses a formidable challenge in lifelong learning, as it operates without task-specific information. Leveraging spiking neural networks (SNNs) for TFCL is particularly intriguing due to their promising results in low-energy applications. However, existing research has predominantly focused on employing SNNs for solving single-task classification problems. In this work, our goal is to utilize ANN to guide SNN in addressing catastrophic forgetting and model compression issues, while treating SNNs as the basic network of the model. We introduce AGT-SNN (ANN-Guided TFCL for Spiking Neural Networks), a novel framework that empowers SNNs to engage in lifelong learning without relying on task-specific information. We conceptualize the learning process of the model as a multiplayer game, involving participants in the roles of players and referees. Our model’s fundamental components comprise player-referee pairs, where the player module adopts a SNN-based Variational Autoencoder (VAE) and the referee module employs a ANN-based Generative Adversarial Network (GAN). To dynamically expand the number of components, we propose an innovative method called Adversarial Similarity Expansion (ASE). ASE evaluates the performance of the current player against previously learned players without accessing any task-specific information. Additionally, we propose a innovative pruning strategy that selectively removes redundant components while preserving the diversity of knowledge, thereby reducing the model’s complexity. Through comprehensive experimental validation, we demonstrate that our proposed framework enables SNNs to achieve exceptional performance while maintaining an appropriate network size.

Supported in part by the National Natural Science Foundation of China (62276106), the Guangdong Provincial Key Laboratory IRADS (2022B1212010006, R0400001-22) and the UIC Start-up Research Fund (UICR0700056-23) and the Artificial Intelligence and Data Science Research Hub (AIRH) of BNU-HKBU United International College (UIC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aljundi, R., et al.: Online continual learning with maximal interfered retrieval. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  2. Aljundi, R., Kelchtermans, K., Tuytelaars, T.: Task-free continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254–11263 (2019)

    Google Scholar 

  3. Arribas, D., Zhao, Y., Park, I.M.: Rescuing neural spike train models from bad MLE. In: Advances in Neural Information Processing Systems, pp. 2293–2303 (2020)

    Google Scholar 

  4. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

  5. De Lange, M., Tuytelaars, T.: Continual prototype evolution: learning online from non-stationary data streams. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8250–8259 (2021)

    Google Scholar 

  6. Fan, W., Bouguila, N., Du, J.X., Liu, X.: Axially symmetric data clustering through Dirichlet process mixture models of Watson distributions. IEEE Trans. Neural Networks Learn. Syst. 30(6), 1683–1694 (2019)

    Article  MathSciNet  Google Scholar 

  7. Fan, W., Yang, L., Bouguila, N.: Unsupervised grouped axial data modeling via hierarchical Bayesian nonparametric models with Watson distributions. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9654–9668 (2022)

    Article  Google Scholar 

  8. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  11. Hanle, Z., Yujie, W., Lei, D., Yifan, H., Guoqi, L.: Going deeper with directly-trained larger spiking neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11062–11070 (2021)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

    Google Scholar 

  13. Kamata, H., Mukuta, Y., Harada, T.: Fully spiking variational autoencoder. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 7059–7067 (2022)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (2014)

    Google Scholar 

  15. Kotariya, V., Ganguly, U.: Spiking-GAN: a spiking generative adversarial network using time-to-first-spike coding. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2022)

    Google Scholar 

  16. Lee, S., Ha, J., Zhang, D., Kim, G.: A neural Dirichlet process mixture model for task-free continual learning. arXiv preprint arXiv:2001.00689 (2020)

  17. Li, Y.: Research and application of deep learning in image recognition. In: 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), pp. 994–999. IEEE (2022)

    Google Scholar 

  18. Lopez-Paz, D., Ranzato, M.A.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  20. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Networks Learn. Syst. 32(2), 604–624 (2020)

    Article  MathSciNet  Google Scholar 

  21. Ramapuram, J., Gregorova, M., Kalousis, A.: Lifelong generative modeling. Neurocomputing 404, 381–400 (2020)

    Article  Google Scholar 

  22. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  23. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Software (TOMS) 11(1), 37–57 (1985)

    Article  MathSciNet  Google Scholar 

  24. Yamazaki, K., Vo-Ho, V.K., Bulsara, D., Le, N.: Spiking neural networks and their applications: a review. Brain Sci. 12(7), 863 (2022)

    Article  Google Scholar 

  25. Ye, F., Bors, A.G.: Lifelong compression mixture model via knowledge relationship graph. In: AAAI Conference on Artificial Intelligence. AAAI Press (2023)

    Google Scholar 

  26. Zhang, J., Fan, W., Liu, X.: Spiking generative networks in lifelong learning environment. In: Fujita, H., Wang, Y., Xiao, Y., Moonis, A. (eds.) IEA/AIE 2023. LNCS, vol. 13925, pp. 353–364. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36819-6_31

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Fan, W., Liu, X. (2024). An ANN-Guided Approach to Task-Free Continual Learning with Spiking Neural Networks. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14432. Springer, Singapore. https://doi.org/10.1007/978-981-99-8543-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8543-2_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8542-5

  • Online ISBN: 978-981-99-8543-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics