Skip to main content

Hyperparameter Tuning by Evolutionary Algorithm for Object Detection on Multimodal Satellite Imagery

  • Conference paper
  • First Online:
Evolutionary Artificial Intelligence (ICEASSM 2017)

Abstract

Deep learning workflow for object detection on multimodal satellite imagery from the modified VEDAI dataset and the related results are presented with a focus on the application of genetic algorithms (GA) for hyperparameter tuning for the deep learning (DL) models. The object detection is investigated for the three data input modality regimes, visible light (RGB) single modality, infrared (IR) single modality, and RGB+IR multimodal fusion (MF) modality, and the two methods of hyperparameter selections, “baseline” models with the pre-selected set of hyperparameters and “GA” models where hyperparameters tuned by GAs implemented in YOLOv5 DL model. The object detection performance of these DL models was measured by mean average precision (mAP). In general, for all models and modalities application of GA leads to a decrease of the mAP, and significant decay of generalization is observed for the single RGB and IR modalities in contrast to multimodal MF (RGB+IR) modality where generalization is preserved. These results demonstrate that the fusion of several modalities provides the class-specific synergistic data augmentation effect which provides better conditions for generalization than the standard and GA-tuned data augmentation methods.

Supported in part by the National Research Foundation of Ukraine (NRFU) grant 2022.01/0199.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boulahia SY, Amamra A, Madi MR, Daikh S (2021) Early, intermediate and late fusion strategies for robust deep learning-based multimodal action recognition. Mach Vis Appl 32(6):121

    Article  Google Scholar 

  2. Corral-Soto ER, Bingbing L (2020) Understanding strengths and weaknesses of complementary sensor modalities in early fusion for object detection. In: 2020 IEEE intelligent vehicles symposium (IV). IEEE, pp 1785–1792

    Google Scholar 

  3. Du X, Zheng X, Lu X, Doudkin AA (2021) Multisource remote sensing data classification with graph fusion network. IEEE Trans Geosci Remote Sens 59(12):10062–10072

    Article  Google Scholar 

  4. Gómez-Chova L, Tuia D, Moser G, Camps-Valls G (2015) Multimodal classification of remote sensing images: a review and future directions. Proceed IEEE 103(9):1560–1584

    Article  Google Scholar 

  5. Gordienko Y, Kochura Y, Taran V, Gordienko N, Rokovyi A, Alienin O, Stirenko S (2020) Scaling analysis of specialized tensor processing architectures for deep learning models. In: Deep learning: concepts and architectures, pp 65–99

    Google Scholar 

  6. Gordienko Y, Kochura Y, Taran V, Gordienko N, Rokovyi O, Alienin O, Stirenko S (2021) “last mile” optimization of edge computing ecosystem with deep learning models and specialized tensor processing architectures. In: Advances in computers, vol 122. Elsevier, pp 303–341

    Google Scholar 

  7. Jocher G et al (2022). Ultralytics. https://doi.org/10.5281/zenodo.7347926. Nov

    Article  Google Scholar 

  8. Li J, Hong D, Gao L, Yao J, Zheng K, Zhang B, Chanussot J (2022) Deep learning in multimodal remote sensing data fusion: a comprehensive review. Int J Appl Earth Observ Geoinf 112:102926

    Google Scholar 

  9. Moreno-Martínez A, Mosavi A (2020) Machine learning information fusion in earth observation: a comprehensive review of methods, applications and data sources. Inf Fusion 63:256–272

    Article  Google Scholar 

  10. Polukhin A, Gordienko Y, Jervan G, Stirenko S (2023) Edge intelligence resource consumption by UAV-based IR object detection. In: Proceedings of the 2023 ACM multimedia, October 29–November 3, 2023, ACM, Ottawa, Canada

    Google Scholar 

  11. Polukhin A, Gordienko Y, Jervan G, Stirenko S (2023) Object detection for rescue operations by high-altitude infrared thermal imaging collected by unmanned aerial vehicles. In: Pertusa A, Gallego AJ, Sánchez JA, Domingues I (eds) Pattern Recognit Image Anal. Springer Nature Switzerland, Cham, pp 490–504

    Chapter  Google Scholar 

  12. Pradhan RN (2020) Towards modular multispectral object detection using adaptive weighted fusion. University of Toronto (Canada)

    Google Scholar 

  13. Ramachandram D, Taylor GW (2017) Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Process Mag 34(6):96–108

    Article  Google Scholar 

  14. Razakarivony S, Jurie F (2016) Vehicle detection in aerial imagery: a small target detection benchmark. J Vis Commun Image Represent 34:187–203

    Article  Google Scholar 

  15. Tang Q, Liang J, Zhu F (2023) A comparative review on multi-modal sensors fusion based on deep learning. Sig Process 109165

    Google Scholar 

  16. Taran V, Gordienko N, Kochura Y, Gordienko Y, Rokovyi A, Alienin O, Stirenko S (2018) Performance evaluation of deep learning networks for semantic segmentation of traffic stereo-pair images. In: Proceedings of the 19th international conference on computer systems and technologies, pp 73–80

    Google Scholar 

  17. Taran V, Gordienko Y, Rokovyi A, Alienin O, Stirenko S (2020) Impact of ground truth annotation quality on performance of semantic image segmentation of traffic conditions. In: Advances in computer science for engineering and education II. Springer, pp 183–193

    Google Scholar 

  18. Taran V, Gordienko Y, Rokovyi O, Alienin O, Kochura Y, Stirenko S (2022) Edge intelligence for medical applications under field conditions. In: Advances in artificial systems for logistics engineering. Springer, pp 71–80

    Google Scholar 

  19. Teixeira I, Morais R, Sousa JJ, Cunha A (2023) Deep learning models for the classification of crops in aerial imagery: a review. Agriculture 13(5):965

    Article  Google Scholar 

  20. Wang L, Zhang X, Song Z, Bi J, Zhang G, Wei H, Tang L, Yang L, Li J, Jia C et al (2023) Multi-modal 3d object detection in autonomous driving: a survey and taxonomy. IEEE Trans Intell Veh

    Google Scholar 

  21. Wang Z, Ma Y, Zhang Y (2022) Review of pixel-level remote sensing image fusion based on deep learning. Inf Fusion

    Google Scholar 

  22. Zhang J, Lei J, Xie W, Fang Z, Li Y, Du Q (2023) Superyolo: super resolution assisted object detection in multimodal remote sensing imagery. IEEE Trans Geosci Remote Sens 61:1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Gordienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gordienko, N., Gordienko, Y., Rokovyi, O., Alienin, O., Stirenko, S. (2024). Hyperparameter Tuning by Evolutionary Algorithm for Object Detection on Multimodal Satellite Imagery. In: Asirvatham, D., Gonzalez-Longatt, F.M., Falkowski-Gilski, P., Kanthavel, R. (eds) Evolutionary Artificial Intelligence. ICEASSM 2017. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-8438-1_25

Download citation

Publish with us

Policies and ethics