Skip to main content

Abstract

Communication and control over their environment have been made possible by brain-computer interface (BCI) for individuals with disabilities and neurological disorders. Applications of BCI have been used to control prosthetic limbs, provide visual feedback, and improve cognitive functions such as attention and memory. In this review, we examine the progress of BCI-based rehabilitation strategies and identify challenges to be overcome in the future. Our study examined brain-computer interface applications in neurological disorders and electroencephalogram (EEG). A number of strategies have been used in the past to improve motor, somatosensory, and cognitive functions, as well as to assist with daily activities. In order to advance BCI-based rehabilitation, researchers must develop better systems and improve computer-brain interfaces. In our study, we found that BCI can provide a personalized and interactive therapeutic environment for neurological rehabilitation. As well as monitoring changes in brain activity, it can also be used to assess treatment effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). pp 2390–2397

    Google Scholar 

  2. Thomas KP, Guan C, Lau CT, Vinod AP, Ang KK (2009) A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE Trans Biomed Eng 56(11):2730–2733

    Article  Google Scholar 

  3. Pfurtscheller G, Guger C, Ramoser H (1999) EEG-based brain-computer interface using subject-specific spatial filters. In: Engineering applications of bio-inspired artificial neural networks: international work-conference on artificial and natural neural networks, IWANN'99 Alicante, Spain, June 2–4, 1999 proceedings, vol II 5. Springer, Berlin, Heidelberg, pp 248–254

    Google Scholar 

  4. Khademi Z, Ebrahimi F, Kordy HM (2022) A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals. Comput Biol Med 143:105288

    Article  Google Scholar 

  5. Geng X, Li D, Chen H, Yu P, Yan H, Yue M (2022) An improved feature extraction algorithms of EEG signals based on motor imagery brain-computer interface. Alex Eng J 61(6):4807–4820

    Article  Google Scholar 

  6. Pawuś D, Paszkiel S (2022) Application of EEG signals integration to proprietary classification algorithms in the implementation of mobile robot control with the use of motor imagery supported by EMG measurements. Appl Sci 12(11):5762

    Article  Google Scholar 

  7. Chen P, Wang H, Sun X, Li H, Grebogi C, Gao Z (2022) Transfer learning with optimal transportation and frequency mixup for EEG-based motor imagery recognition. IEEE Trans Neural Syst Rehabil Eng 30:2866–2875

    Article  Google Scholar 

  8. Ramadan RA, Vasilakos AV (2017) Brain computer interface: control signals review. Neurocomputing 223:26–44

    Article  Google Scholar 

  9. Sanei S, Chambers JA (2013) EEG signal processing. Wiley

    Google Scholar 

  10. Rampil IJ (1998) A primer for EEG signal processing in anesthesia. J Am Soc Anesth 89(4):980–1002

    Google Scholar 

  11. Jebelli H, Hwang S, Lee S (2018) EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device. J Comput Civ Eng 32(1):04017070

    Article  Google Scholar 

  12. Shedeed HA, Issa MF, El-Sayed SM (2013) Brain EEG signal processing for controlling a robotic arm. In: 2013 8th international conference on computer engineering & systems (ICCES). pp 152–157

    Google Scholar 

  13. Herff C, Putze F, Heger D, Guan C, Schultz T (2012) Speaking mode recognition from functional near infrared spectroscopy. In: 2012 annual international conference of the IEEE engineering in medicine and biology society. pp 1715–1718

    Google Scholar 

  14. Martini ML, Oermann EK, Opie NL, Panov F, Oxley T, Yaeger K (2020) Sensor modalities for brain-computer interface technology: a comprehensive literature review. Neurosurgery 86(2):E108–E117

    Article  Google Scholar 

  15. Farnsworth B (2019) Eeg (electroencephalography): the complete pocket guide. IMotions, Global HQ: Copenhagen, Denmark

    Google Scholar 

  16. Tabar YR, Halici U (2016) A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng 14(1):016003

    Article  Google Scholar 

  17. Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M et al (2017) Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 38(11):5391–5420

    Article  Google Scholar 

  18. Zhou X, Hu Y, Wu J, Liang W, Ma J, Jin Q (2022) Distribution bias aware collaborative generative adversarial network for imbalanced deep learning in industrial IoT. IEEE Trans Ind Inf 19(1):570–580

    Article  Google Scholar 

  19. Zhou X, et al (2022) Edge-enabled two-stage scheduling based on deep reinforcement learning for internet of everything. IEEE Internet Things J 10(4):3295–3304

    Google Scholar 

  20. Zhou X, Liang W, Kevin I, Wang K, Yang LT (2020) Deep correlation mining based on hierarchical hybrid networks for heterogeneous big data recommendations. IEEE Trans Comput Soc Syst 8(1):171–178

    Article  Google Scholar 

  21. Zhou X, Xu X, Liang W, Zeng Z, Yan Z (2021) Deep-learning-enhanced multitarget detection for end–edge–cloud surveillance in smart IoT. IEEE Internet Things J 8(16):12588–12596

    Article  Google Scholar 

  22. Wang F, Wang L, Li G, Wang Y, Lv C, Qi L (2021) Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation. World Wide Web, 1–21

    Google Scholar 

  23. Qi L, Yang Y, Zhou X, Rafique W, Ma J (2021) Fast anomaly identification based on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0. IEEE Trans Ind Inform 18(9):6503–6511

    Google Scholar 

  24. Wu S, Shen S, Xu X, Chen Y, Zhou X, Liu D et al (2022) Popularity-aware and diverse web APIs recommendation based on correlation graph. IEEE Trans Comput Soc Syst 10(2):771–782

    Article  Google Scholar 

  25. Zhou X, Liang W, Li W, Yan K, Shimizu S, Kevin I, Wang K (2021) Hierarchical adversarial attacks against graph-neural-network-based IoT network intrusion detection system. IEEE Internet Things J 9(12):9310–9319

    Article  Google Scholar 

  26. Dai H, Yu J, Li M, Wang W, Liu AX, Ma J et al (2022) Bloom filter with noisy coding framework for multi-set membership testing. IEEE Trans Knowl Data Eng

    Google Scholar 

  27. Kong L, Li G, Rafique W, Shen S, He Q, Khosravi MR, et al (2022) Time-aware missing healthcare data prediction based on ARIMA model. IEEE/ACM Trans Comput Biol Bioinform

    Google Scholar 

  28. Sakhavi S, Guan C, Yan S (2018) Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Netw Learn Syst 29(11):5619–5629

    Article  MathSciNet  Google Scholar 

  29. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  30. Liu X, Shen Y, Liu J, Yang J, Xiong P, Lin F (2020) Parallel spatial–temporal self-attention CNN-based motor imagery classification for BCI. Front Neurosci 14:587520

    Article  Google Scholar 

  31. Raza H, Cecotti H, Li Y, Prasad G (2016) Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface. Soft Comput 20:3085–3096

    Article  Google Scholar 

  32. Zanini P, Congedo M, Jutten C, Said S, Berthoumieu Y (2017) Transfer learning: a Riemannian geometry framework with applications to brain–computer interfaces. IEEE Trans Biomed Eng 65(5):1107–1116

    Article  Google Scholar 

  33. Azab AM, Mihaylova L, Ang KK, Arvaneh M (2019) Weighted transfer learning for improving motor imagery-based brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 27(7):1352–1359

    Article  Google Scholar 

  34. Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA (2018) Single-prolonged stress: a review of two decades of progress in a rodent model of post-traumatic stress disorder. Front Psych 9:196

    Article  Google Scholar 

  35. Centers for Disease Control and Prevention (2015) Report to congress on traumatic brain injury in the United States: epidemiology and rehabilitation, vol 2. National Center for Injury Prevention and Control, pp 1–72

    Google Scholar 

  36. Morrow EL, Patel NN, Duff MC (2021) Disability and the COVID-19 pandemic: a survey of individuals with traumatic brain injury. Arch Phys Med Rehabil 102(6):1075–1083

    Article  Google Scholar 

  37. Bergeron D, Iorio-Morin C, Bonizzato M, Lajoie G, Orr Gaucher N, Racine É, Weil AG (2023) Use of invasive brain-computer interfaces in pediatric neurosurgery: technical and ethical considerations. J Child Neurol 38(3–4):223–238

    Article  Google Scholar 

  38. Rohani DA, Puthusserypady S (2015) BCI inside a virtual reality classroom: a potential training tool for attention. EPJ Nonlinear Biomed Phys 3:1–14

    Article  Google Scholar 

  39. Rohani DA, Sorensen HB, Puthusserypady S (2014) Brain-computer interface using P300 and virtual reality: a gaming approach for treating ADHD. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society. pp 3606–3609

    Google Scholar 

  40. Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A, Volosyak I (2018) Brain–computer interface spellers: a review. Brain Sci 8(4):57

    Article  Google Scholar 

  41. Hosseini MP, Pompili D, Elisevich K, Soltanian-Zadeh H (2017) Optimized deep learning for EEG big data and seizure prediction BCI via internet of things. IEEE Trans Big Data 3(4):392–404

    Article  Google Scholar 

  42. Mukherjee D, Patil CG (2011) Epidemiology and the global burden of stroke. World Neurosurg 76(6):S85–S90

    Article  Google Scholar 

  43. Foong R, et al (2019) Assessment of the efficacy of EEG-based MI-BCI with visual feedback and EEG correlates of mental fatigue for upper-limb stroke rehabilitation. IEEE Trans Biomed Eng 67(3):786–795

    Google Scholar 

  44. Friedrich EV, Scherer R, Sonnleitner K, Neuper C (2011) Impact of auditory distraction on user performance in a brain–computer interface driven by different mental tasks. Clin Neurophysiol 122(10):2003–2009

    Google Scholar 

  45. Alvarsson JJ, Wiens S, Nilsson ME (2010) Stress recovery during exposure to nature sound and environmental noise. Int J Environ Res Public Health 7(3):1036–1046

    Article  Google Scholar 

  46. Marx E, Stephan T, Nolte A, Deutschländer A, Seelos KC, Dieterich M, Brandt T (2003) Eye closure in darkness animates sensory systems. Neuroimage 19(3):924–934

    Article  Google Scholar 

  47. Régin JC (1994) A filtering algorithm for constraints of difference in CSPs. In: AAAI, vol 94. pp 362–367

    Google Scholar 

  48. Novi Q, Guan C, Dat TH, Xue P (2007) Sub-band common spatial pattern (SBCSP) for brain-computer interface. In: 2007 3rd international IEEE/EMBS conference on neural engineering. pp 204–207

    Google Scholar 

  49. Voinas AE, Das R, Khan MA, Brunner I, Puthusserypady S (2022) Motor imagery EEG signal classification for stroke survivors rehabilitation. In: 2022 10th international winter conference on Brain-Computer Interface (BCI). IEEE, pp 1–5

    Google Scholar 

  50. Smith FW, Smith ML (2019) Decoding the dynamic representation of facial expressions of emotion in explicit and incidental tasks. Neuroimage 195:261–271

    Article  Google Scholar 

  51. Narayan Y, Ranjan R (2022) EEG signals classification for right-and left-hand movement discrimination using SVM and LDA classifiers. In: High performance computing and networking: select proceedings of CHSN 2021. Springer, Singapore, pp 133–142

    Google Scholar 

  52. Hohmann T, Exner M, Schott N (2016) The role of vision and auditory distraction on the temporal congruence between physical execution and motor imagery. J Imag Res Sport Phys Act 11(1):25–33

    Google Scholar 

  53. Cai S, Li H, Wu Q, Liu J, Zhang Y (2022) Motor imagery decoding in the presence of distraction using graph sequence neural networks. IEEE Trans Neural Syst Rehabil Eng 30:1716–1726

    Article  Google Scholar 

  54. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv:1710.10903

  55. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv:1409.0473

  56. Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K (2019)\ Simplifying graph convolutional networks. In: International conference on machine learning. PMLR, pp 6861–6871

    Google Scholar 

  57. Nt H, Maehara T (2019) Revisiting graph neural networks: all we have is low-pass filters. arXiv:1905.09550

  58. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1–9

    Google Scholar 

  59. Shelishiyah R, Dharan MB, Kumar TK, Musaraf R, Beeta TD (2022) Signal Processing for hybrid BCI signals. In: Journal of physics: conference series, vol 2318, no 1. IOP Publishing, p 012007

    Google Scholar 

  60. Cicalese PA, Li R, Ahmadi MB, Wang C, Francis JT, Selvaraj S, et al (2020) An EEG-fNIRS hybridization technique in the four-class classification of alzheimer’s disease. J Neurosci Methods 336:108618

    Google Scholar 

  61. Choi WS, Yeom HG (2022) Studies to overcome brain-computer interface challenges. Appl Sci 12(5):2598

    Article  Google Scholar 

  62. Stieger JR, Engel SA, Suma D, He B (2021) Benefits of deep learning classification of continuous noninvasive brain–computer interface control. J Neural Eng 18(4):046082

    Article  Google Scholar 

  63. Park S, Ha J, Kim DH, Kim L (2021) Improving motor imagery-based brain-computer interface performance based on sensory stimulation training: an approach focused on poorly performing users. Front Neurosci 15:732545

    Article  Google Scholar 

  64. Yeom HG, Kim JS, Chung CK (2020) LSTM improves accuracy of reaching trajectory prediction from magnetoencephalography signals. IEEE Access 8:20146–20150

    Article  Google Scholar 

  65. Jiang X, Lopez E, Stieger JR, Greco CM, He B (2021) Effects of long-term meditation practices on sensorimotor rhythm-based brain-computer interface learning. Front Neurosci 14:584971

    Article  Google Scholar 

  66. Fisher RS, Boas WVE, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472

    Article  Google Scholar 

  67. Namazi H, Jafari S (2018) Age-based variations of fractal structure of EEG signal in patients with epilepsy. Fractals 26(04):1850051

    Article  MathSciNet  Google Scholar 

  68. Gao Y, Gao B, Chen Q, Liu J, Zhang Y (2020) Deep convolutional neural network-based epileptic electroencephalogram (EEG) signal classification. Front Neurol 11:375

    Article  Google Scholar 

  69. Zhou M, Tian C, Cao R, Wang B, Niu Y, Hu T et al (2018) Epileptic seizure detection based on EEG signals and CNN. Front Neuroinform 12:95

    Article  Google Scholar 

  70. Tian X, Deng Z, Ying W, Choi KS, Wu D, Qin B, et al (2019) Deep multi-view feature learning for EEG-based epileptic seizure detection. IEEE Trans Neural Syst Rehabil Eng 27(10):1962–1972

    Google Scholar 

  71. Dao NTA, Dung NV, Trung NL, Abed-Meraim K (2020) Multi-channel EEG epileptic spike detection by a new method of tensor decomposition. J Neural Eng 17(1):016023

    Article  Google Scholar 

  72. Rodrigues PM, Bispo BC, Garrett C, Alves D, Teixeira JP, Freitas D (2021) Lacsogram: a new EEG tool to diagnose Alzheimer’s disease. IEEE J Biomed Health Inform 25(9):3384–3395

    Article  Google Scholar 

  73. Safi MS, Safi SMM (2021) Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters. Biomed Signal Process Control 65:102338

    Article  Google Scholar 

  74. Meghdadi AH, Stevanović Karić M, McConnell M, Rupp G, Richard C, Hamilton J et al (2021) Resting state EEG biomarkers of cognitive decline associated with Alzheimer’s disease and mild cognitive impairment. PLoS One 16(2):e0244180

    Article  Google Scholar 

  75. Smailovic U, Jelic V (2019) Neurophysiological markers of Alzheimer’s disease: quantitative EEG approach. Neurol Ther 8:37–55

    Article  Google Scholar 

  76. Benwell CS, Davila-Pérez P, Fried PJ, Jones RN, Travison TG, Santarnecchi E, et al (2020) EEG spectral power abnormalities and their relationship with cognitive dysfunction in patients with Alzheimer's disease and type 2 diabetes. Neurobiol Aging 85:83–95

    Google Scholar 

  77. Smailovic U, Koenig T, Kåreholt I, Andersson T, Kramberger MG, Winblad B, Jelic V (2018) Quantitative EEG power and synchronization correlate with Alzheimer’s disease CSF biomarkers. Neurobiol Aging 63:88–95

    Article  Google Scholar 

  78. Chu C, Wang X, Cai L, Zhang L, Wang J, Liu C, Zhu X (2020) Spatiotemporal EEG microstate analysis in drug-free patients with Parkinson's disease. NeuroImage: Clinical 25:102132

    Google Scholar 

  79. Gálvez G, Recuero M, Canuet L, Del-Pozo F (2018) Short-term effects of binaural beats on EEG power, functional connectivity, cognition, gait and anxiety in Parkinson’s disease. Int J Neural Syst 28(05):1750055

    Article  Google Scholar 

  80. Chawla P, Rana SB, Kaur H, Singh K, Yuvaraj R, Murugappan M (2023) A decision support system for automated diagnosis of Parkinson’s disease from EEG using FAWT and entropy features. Biomed Signal Process Control 79:104116

    Article  Google Scholar 

  81. Shah SAA, Zhang L, Bais A (2020) Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals. Neural Netw 130:75–84

    Article  Google Scholar 

  82. Anjum MF, Dasgupta S, Mudumbai R, Singh A, Cavanagh JF, Narayanan NS (2020) Linear predictive coding distinguishes spectral EEG features of Parkinson’s disease. Parkinsonism Relat Disord 79:79–85

    Article  Google Scholar 

  83. Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H (2018) Parkinson’s disease: cause factors, measurable indicators, and early diagnosis. Comput Biol Med 102:234–241

    Article  Google Scholar 

  84. Chen H, Jin M, Li Z, Fan C, Li J, He H (2021) MS-MDA: multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition. Front Neurosci 15:778488

    Article  Google Scholar 

  85. Fiene M, Rufener KS, Kuehne M, Matzke M, Heinze HJ, Zaehle T (2018) Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis. J Neurol 265:607–617

    Article  Google Scholar 

  86. Recenti M, Ricciardi C, Aubonnet R, Picone I, Jacob D, Svansson HÁ et al (2021) Toward predicting motion sickness using virtual reality and a moving platform assessing brain, muscles, and heart signals. Front Bioeng Biotechnol 9:635661

    Article  Google Scholar 

  87. Ahmadi A, Davoudi S, Daliri MR (2019) Computer aided diagnosis system for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention. Comput Methods Programs Biomed 169:9–18

    Article  Google Scholar 

  88. McMackin R, Muthuraman M, Groppa S, Babiloni C, Taylor JP, Kiernan MC et al (2019) Measuring network disruption in neurodegenerative diseases: new approaches using signal analysis. J Neurol Neurosurg Psychiatry 90(9):1011–1020

    Article  Google Scholar 

  89. Michel CM, Koenig T (2018) EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. Neuroimage 180:577–593

    Article  Google Scholar 

  90. Sharma M, Tiwari J, Patel V, Acharya UR (2021) Automated identification of sleep disorder types using triplet half-band filter and ensemble machine learning techniques with eeg signals. Electronics 10(13):1531

    Article  Google Scholar 

  91. Semyachkina-Glushkovskaya O, Mamedova A, Vinnik V, Klimova M, Saranceva E, Ageev V et al (2021) Brain mechanisms of COVID-19-sleep disorders. Int J Mol Sci 22(13):6917

    Article  Google Scholar 

  92. Mullins AE, Kim JW, Wong KK, Bartlett DJ, Vakulin A, Dijk DJ et al (2021) Sleep EEG microstructure is associated with neurobehavioural impairment after extended wakefulness in obstructive sleep apnea. Sleep Breath 25:347–354

    Article  Google Scholar 

  93. Sharma M, Patel V, Tiwari J, Acharya UR (2021) Automated characterization of cyclic alternating pattern using wavelet-based features and ensemble learning techniques with eeg signals. Diagnostics 11(8):1380

    Article  Google Scholar 

  94. Lai D, Heyat MBB, Khan FI, Zhang Y (2019) Prognosis of sleep bruxism using power spectral density approach applied on EEG signal of both EMG1-EMG2 and ECG1-ECG2 channels. IEEE Access 7:82553–82562

    Article  Google Scholar 

  95. Baker FC, Yűksel D, de Zambotti M (2020) Sex differences in sleep. In: Sleep disorders in women: a guide to practical management. pp 55–64

    Google Scholar 

  96. Kang J, Chen H, Li X, Li X (2019) EEG entropy analysis in autistic children. J Clin Neurosci 62:199–206

    Article  Google Scholar 

  97. Heunis T, Aldrich C, Peters JM, Jeste SS, Sahin M, Scheffer C, De Vries PJ (2018) Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder–a systematic methodological exploration of technical and demographic confounders in the search for biomarkers. BMC Med 16:1–17

    Article  Google Scholar 

  98. Sundaresan A, Penchina B, Cheong S, Grace V, Valero-Cabré A, Martel A (2021) Evaluating deep learning EEG-based mental stress classification in adolescents with autism for breathing entrainment BCI. Brain Inf 8(1):1–12

    Article  Google Scholar 

  99. Gabard-Durnam LJ, Wilkinson C, Kapur K, Tager-Flusberg H, Levin AR, Nelson CA (2019) Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nat Commun 10(1):4188

    Article  Google Scholar 

  100. Ibrahim S, Djemal R, Alsuwailem A (2018) Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybern Biomed Eng 38(1):16–26

    Article  Google Scholar 

  101. Jia H, Yu D (2019) Aberrant intrinsic brain activity in patients with autism spectrum disorder: insights from EEG microstates. Brain Topogr 32:295–303

    Article  Google Scholar 

  102. Liu S, Feng X, Ren Y, Jiang H, Yu H (2023) DCENet: a dynamic correlation evolve network for short-term traffic prediction. Physica A 614:128525

    Article  Google Scholar 

  103. Deng Y, Yin L, Gao X, Zhou H, Wang Z, Zou G (2023) EA-EDNet: encapsulated attention encoder-decoder network for 3D reconstruction in low-light-level environment. Multimed Syst 1–17

    Google Scholar 

  104. Hosseini SM, Aminitabar AH, Shalchyan V (2023) Investigating the application of graph theory features in hand movement directions decoding using EEG signals. Neurosci Res

    Google Scholar 

  105. Hosseini SM, Shalchyan V (2023) State-based decoding of continuous hand movements using EEG signals. IEEE Access

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khosro Rezaee or Mohamadreza Khosravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sami, A., Rezaee, K., Ansari, M., Khosravi, M., Karimi, V. (2024). Review of Brain-Computer Interface Applications in Neurological Disorders. In: Mumtaz, S., Rawat, D.B., Menon, V.G. (eds) Proceedings of the Second International Conference on Computing, Communication, Security and Intelligent Systems. IC3E 2018. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-8398-8_26

Download citation

Publish with us

Policies and ethics