Skip to main content

A Sampling Method for Performance Predictor Based on Contrastive Learning

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14471))

Included in the following conference series:

  • 570 Accesses

Abstract

Performance predictors are commonly dedicated to mitigating the substantial resource consumption of neural architecture search. Nevertheless, existing performance predictors are typically constructed based on the randomly sampled training data. Such a sampling method will not only lead to unnecessary computation budget caused by the sampled similar architectures, but also induce performance deterioration resulting from the poor spanning of search space. In this paper, we propose a contrastive learning-based sampling method to address the aforementioned issues. Specifically, we first encode the architectures as directed acyclic graphs, based on which a large number of architectures are augmented to learn invariant knowledge of architectures. After that, we maximize agreement based on augmented architectures to express similar architectures to analogous representations. Consequently, representative architectures are selected through clustering similar architectures to improve the spanning of the search space. We conduct extensive experiments on NAS-Bench-101 and NAS-Bench-201. The experimental results show that the proposed method can improve the predictive ability of performance predictors compared with the random sampling-based ones and can help search superior architectures when integrating with neural architecture search. In addition, an ablation study shows the effectiveness of contrastive learning and the clustering method used in the proposed sampling method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning (2020)

    Google Scholar 

  4. Chen, Z., Zhan, Y., Yu, B., Gong, M., Du, B.: Not all operations contribute equally: hierarchical operation-adaptive predictor for neural architecture search. In: 2021 IEEE/CVF International Conference on Computer Vision, pp. 10488–10497 (2021)

    Google Scholar 

  5. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  6. Crespo, R., Alvarez, C., Hernandez, I., Garcia, C.: A spatially explicit analysis of chronic diseases in small areas: a case study of diabetes in Santiago, Chile. Int. J. Health Geograph. 19(1), 1–13 (2020)

    Article  Google Scholar 

  7. Deng, B., Yan, J., Lin, D.: Peephole: Predicting Network Performance Before Training. arXiv e-prints arXiv:1712.03351 (2017)

  8. Ding, K., Xu, Z., Tong, H., Liu, H.: Data augmentation for deep graph learning: a survey. ACM SIGKDD Explor. Newsl 24(2), 61–77 (2022)

    Article  Google Scholar 

  9. Dong, X., Yang, Y.: Nas-bench-201: Extending the scope of reproducible neural architecture search. arXiv preprint arXiv:2001.00326 (2020)

  10. Elsken, T., Hendrik Metzen, J., Hutter, F.: Neural architecture search: a survey. arXiv e-prints arXiv:1808.05377 (2018)

  11. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  12. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. In: International Conference on Machine Learning, pp. 1437–1446. PMLR (2018)

    Google Scholar 

  13. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  15. Liu, Y., et al.: Graph self-supervised learning: a survey. IEEE Trans. Knowl. Data Eng. 1–1 (2022). https://doi.org/10.1109/TKDE.2022.3172903

  16. Liu, Y., Tang, Y., Sun, Y.: Homogeneous architecture augmentation for neural predictor. In: 2021 IEEE/CVF International Conference on Computer Vision, pp. 12229–12238 (2021)

    Google Scholar 

  17. Loh, W.Y.: Classification and regression trees. Wiley Interdisciplinary Rev. Data Mining Knowl. Discov. 1(1), 14–23 (2011)

    Article  Google Scholar 

  18. Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  19. Milligan, G.W., Cooper, M.: Methodology review: clustering methods. Appl. Psychol. Meas. 11, 329–354 (1987). https://api.semanticscholar.org/CorpusID:121335572

  20. Sen, P.K.: Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63(324), 1379–1389 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  22. Sun, Y., Wang, H., Xue, B., Jin, Y., Yen, G.G., Zhang, M.: Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance predictor. IEEE Trans. Evol. Comput. 24(2), 350–364 (2020)

    Article  Google Scholar 

  23. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  24. Verma, V., Qu, M., Lamb, A., Bengio, Y., Kannala, J., Tang, J.: Graphmix: regularized training of graph neural networks for semi-supervised learning. arxiv e-prints, art. arXiv preprint arXiv:1909.11715 (2019)

  25. Wen, W., Liu, H., Chen, Y., Li, H., Bender, G., Kindermans, P.-J.: Neural predictor for neural architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 660–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_39

    Chapter  Google Scholar 

  26. Wu, B., et al.: Fbnet: hardware-aware efficient convnet design via differentiable neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10734–10742 (2019)

    Google Scholar 

  27. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-bench-101: towards reproducible neural architecture search. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 7105–7114 (2019)

    Google Scholar 

  28. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, pp. 103–114 (1996)

    Google Scholar 

  29. Zhu, R., et al.: Aligraph: a comprehensive graph neural network platform. In: Proceedings of the VLDB Endowment, vol. 12. no. 12, pp. 2094–2105 (2019)

    Google Scholar 

  30. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, J., Feng, Y., Sun, Y. (2024). A Sampling Method for Performance Predictor Based on Contrastive Learning. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14471. Springer, Singapore. https://doi.org/10.1007/978-981-99-8388-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8388-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8387-2

  • Online ISBN: 978-981-99-8388-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics