Skip to main content

Gene Sequence Assembly and Application

  • Chapter
  • First Online:
Association Analysis Techniques and Applications in Bioinformatics
  • 52 Accesses

Abstract

Sequencing and gene sequence assembly are the first steps in the process of genome-wide association studies (GWAS), in which gene fragments obtained by sequencing technologies are analyzed by algorithms and finally assembled into gene chains ready for analysis, while some advanced association analysis technologies are also able to obtain statistics of insertion and variation patterns of gene chains in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SANGER F. The Croonian Lecture, 1975. Nucleotide sequences in DNA[J]. Proceedings of the Royal Society of London. Series B, Biological sciences, 1975, 191(1104):317–33.

    Google Scholar 

  2. FAHIM S, MOHAMMAD K, ZHENG L. MR and PET image fusion using nonparametric Bayesian joint dictionary learning[J]. IEEE Sensors Letters. 2019, 3 (7):2019–2022.

    Google Scholar 

  3. LANDER E S,WATERMAN M S. Genomic mapping by fingerprinting random clones: a mathematical analysis[J]. Genomics 1988, 2(3):231–39.

    Article  MathSciNet  Google Scholar 

  4. MAIER D. The complexity of some problems on subsequences and supersequences[J]. Journal of the ACM, 1978, 25(2):322–336.

    Article  MathSciNet  Google Scholar 

  5. NAGARAJAN N, POP M. Parametric complexity of sequence assembly: theory and applications to next generation sequencing[J]. Journal of Computational Biology, 2009, 16(7):897–908.

    Article  MathSciNet  Google Scholar 

  6. JAYANT B, ABHIJIT N. Haar wavelet transform–based optimal Bayesian method for medical image fusion[J]. Medical & Biological Engineering & Computing, 2020, 58(10):2397–2411.

    Article  Google Scholar 

  7. LIU Y, BERTILS, MASKELLDL. Parallelized short read assembly of large genomes using de Bruijn graphs[J]. BMC Bioinformatics 2011, 12(1):354.

    Google Scholar 

  8. MYERS E W. Toward simplifying and accurately formulating fragment assembly[J]. Journal of computational biology, 1995, 2(2):275–290.

    Article  Google Scholar 

  9. WANG Y P, DANG J W, LI Q, et al. Multimodal medical image fusion using fuzzy radial basis function neural networks[J]. International Conference on Wavelet Analysis and Pattern Recognition, 2007, 2(ICWAPR’07):778–782.

    Google Scholar 

  10. KOREN S, WALENZ B P, BERLIN K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Research, 2017, 27(5):722–736.

    Article  Google Scholar 

  11. YE C, HILL C M, WU S, et al. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies[J]. Scientific Reports, 2016, 6(1):31900.

    Google Scholar 

  12. WANG Z B, MA Y D. Medical image fusion using m-PCNN[J]. Information Fusion, 2008, 9(2):176–185.

    Article  Google Scholar 

  13. TENG J.H, WANG S H, ZHANG J Z, et al. Neuro-fuzzy logic based fusion algorithm of medical images[C] //International Congress on Image & Signal Processing. IEEE, 2010, 4:1552–1556.

    Google Scholar 

  14. ZERBINO D R, BIRNEY E. Velvet:algorithms for de novo short read assembly using de Bruijn graphs[J]. Genome Research. 2008, 18(5):821–829.

    Article  Google Scholar 

  15. CHAISSON M J, PEVZNER P A. Short read fragment assembly of bacterial genomes[J]. Genome Research. 2008, 18(5):324–330.

    Article  Google Scholar 

  16. OKANOHARA D, SADAKANE K. Practical entropy-compressed rank/select dictionary[C]. In Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), 2007:60–70.

    Google Scholar 

  17. SIMPSON J T, Durbin R. Efficient de novo assembly of large genomes using compressed data structures[J]. Genome Research, 2012, 22(3):549–556.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Guangxi Education Publishing House

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Q. (2024). Gene Sequence Assembly and Application. In: Association Analysis Techniques and Applications in Bioinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-99-8251-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8251-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8250-9

  • Online ISBN: 978-981-99-8251-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics